İLAÇ KEŞFİ VE GELİŞTİRİLMESİNDE YAPAY ZEKÂ

Amaç: Makine zekâsı olarak da bilinen Yapay Zekâ’nın ilaç keşfi ve geliştirilme sürecindeki yeri ve öneminin ortaya konması amaçlanmıştır.

ARTIFICIAL INTELLIGENCE ON DRUG DISCOVERY AND DEVELOPMENT

Objective: It is aimed to reveal the place and importance of Artificial Intelligence, also known as machine intelligence, in drug discovery and development.

___

  • 1. Schneider, P., Walters, W. P., Plowright, A. T., Sieroka, N., Listgarten, J., Goodnow, R. A., Fisher, J., Jansen, J. M., Duca, J. S., Rush, T. S., Zentgraf, M., Hill, J. E., Krutoholow, E., Kohler, M., Blaney, J., Funatsu, K., Luebkemann, C., Schneider, G. (2020). Rethinking Drug Design in The Artificial İntelligence Era. Nature Reviews Drug Discovery, 19(5), 353–364. https://doi.org/10.1038/s41573-019-0050-3
  • 2. Lo, Y. C., Ren, G., Honda, H., Davis, K. L. (2019). Artificial Intelligence-Based Drug Design and Discovery. ChemInformatics and Its Applications. Drug Discovery Today. http://dx.doi.org/10.5772/intechopen.89012
  • 3. Mak, K. K., Pichika, M. R. (2019). Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today, 24(3), 773–780. https://doi.org/10.1016/j.drudis.2018.11.014
  • 4. AI for Chemistry Web Site. Retrieved December 20, 2020, from https://chemintelligence.com/ai-for-chemistry
  • 5. McCarthy, J., Hayes, P. (1969). Some Philosophical Problems From the Standpoint of Artificial Intelligence. In Machine Intelligence; Edinburgh University Press: Edinburgh, Retrieved from https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.5082
  • 6. Yang, X., Wang, Y., Byrne, R., Schneider, G., Yang, S. (2019). Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chemical Reviews, 119(18), 10520–10594. https://doi.org/10.1021/acs.chemrev.8b00728
  • 7. Barr, A.; Feigenbaum, E. A.; Cohen, P. R. (1982). Handbook of Artificial Intelligence; AddisonWesley Longman: Boston, MA, USA.
  • 8. Popovic, D., Bhatkar, V. P. (1994). Methods and Tools for Applied Artificial Intelligence; Marcel Dekker: New York.
  • 9. Bobrow, D. G. (1964). Natural Language Input for a Computer Problem Solving System. In Semantic Information Processing; MIT Press: Cambridge.
  • 10. Weizenbaum, J. (1966). ELIZA---a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36–45. https://doi.org/10.1145/365153.365168
  • 11. Baum, E. B. (1988). On the capabilities of multilayer perceptrons. Journal of Complexity, 4(3), 193–215. https://doi.org/10.1016/0885-064X(88)90020-9
  • 12. Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning internal representations by error propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press: Cambridge.
  • 13. Qian, N., Sejnowski, T. J. (1988). Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology, 202(4), 865–884. https://doi.org/10.1016/0022-2836(88)90564-5
  • 14. Hammett, L. P. (1937). The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives. Journal of the American Chemical Society, 59(1), 96–103. https://doi.org/10.1021/ja01280a022
  • 15. Hansch, C., Fujita, T. (1964). ρ-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. Journal of the American Chemical Society, 86(8), 1616–1626. https://doi.org/10.1021/ja01062a035
  • 16. Miller, E., Hansch, C. (1967). Structure-Activity Analysis of Tetrahydrofolate Analogs Using Substituent Constants and Regression Analysis. Journal of Pharmaceutical Sciences, 56(1), 92−97. https://doi.org/10.1002/jps.2600560119
  • 17. Kopecký, J., Boček, K., Vlachová, D. (1965). Chemical Structure and Biological Activity on mand p-Disubstituted Derivatives of Benzene. Nature, 207(5000), 981–981. https://doi.org/10.1038/207981a0
  • 18. Wessel, M. D., Jurs, P. C., Tolan, J. W., Muskal, S. M. (1998). Prediction of human intestinal absorption of drug compounds from molecular structure. Journal of Chemical Information and Computer Sciences, 38(4), 726–735. https://doi.org/10.1021/ci980029a
  • 19. Martin Y. C. (2010). Quantitative Drug Design: A Critical Introduction. Boca Raton, FL: CRC Press. 2nd ed.
  • 20. Basile, A. O., Yahi, A., Tatonetti, N. P. (2019). Artificial Intelligence for Drug Toxicity and Safety. Trends in Pharmacological Sciences, 40(9), 624–635. https://doi.org/10.1016/j.tips.2019.07.005
  • 21. Zhu, H. (2020). Big data and artificial intelligence modeling for drug discovery. Annual Review of Pharmacology and Toxicology, 60(1), 573–589. https://doi.org/10.1146/annurev-pharmtox010919-023324
  • 22. Bunney, P. E., Zink, A. N., Holm, A. A., Billington, C. J., Kotz, C. M. (2017). Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet. Physiology & Behavior, 176(1), 139–148. https://doi.org/10.1016/j.physbeh.2017.03.040
  • 23. Properzi, F., Taylor, K., Steedman, M. (2019). Accelerating drug discovery. Intelligent drug discovery powered by AI. 2-7. Retrieved from https://blogs.deloitte.co.uk/health/
  • 24. Panteleev, J., Gao, H., Jia, L. (2018). Recent applications of machine learning in medicinal chemistry. Bioorganic and Medicinal Chemistry Letters, 28(17), 2807–2815. https://doi.org/10.1016/j.bmcl.2018.06.046
  • 25. D’Souza, S., Prema, K. V., Balaji, S. (2020). Machine learning models for drug–target interactions: current knowledge and future directions. Drug Discovery Today, 25(4), 748–756. https://doi.org/10.1016/j.drudis.2020.03.003
  • 26. Linton-Reid, K. (2020). Introduction: An Overview of AI in Oncology Drug Discovery and Development. Artificial Intelligence in Oncology Drug Discovery and Development, (Ml), 1–13. https://doi.org/10.5772/intechopen.92799
  • 27. Ippolito, M., Ferguson, J., Jenson, F. (2020). Improving facies prediction by combining supervised and unsupervised learning methods. Journal of Petroleum Science and Engineering, 200, 108300. https://doi.org/10.1016/j.petrol.2020.108300
  • 28. Civelek, Ö. (2003). Bulanık Mantık Nedir Yapay Zekâ Nedir. Türkiye Mühendislik Haberleri Dergisi, 423(1), 40–50.
  • 29. Bohr, H. (2020). Drug discovery and molecular modeling using artificial intelligence. In Artificial Intelligence in Healthcare, pp. https://doi.org/10.1016/b978-0-12-818438-7.00003-4
  • 30. Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., Tekade, R. K. (2020). Artificial intelligence in drug discovery and development. Drug Discovery Today, 26(1), 80–93. https://doi.org/10.1016/j.drudis.2020.10.010
  • 31. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039
  • 32. Jing, Y., Bian, Y., Hu, Z., Wang, L., Xie, X. Q. S. (2018). Deep Learning for Drug Design: an Artificial Intelligence Paradigm for Drug Discovery in the Big Data Era. AAPS Journal, 20(3), 58. https://doi.org/10.1208/s12248-018-0210-0
  • 33. Zhavoronkov, A. (2018). Artificial Intelligence for Drug Discovery, Biomarker Development, and Generation of Novel Chemistry. Molecular Pharmaceutics, 15(10), 4311–4313. https://doi.org/10.1021/acs.molpharmaceut.8b00930
  • 34. Gunavathi, C., Sivasubramanian, K., Keerthika, P., Paramasivam, C. (2020). A review on convolutional neural network based deep learning methods in gene expression data for disease diagnosis. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.10.263
  • 35. Hubel, D. H., Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1), 106–154. https://doi.org/10.1113/jphysiol.1962.sp006837
  • 36. Hubel, D. H., Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. The Journal of Physiology, 148(3), 574–591. https://doi.org/10.1113/jphysiol.1959.sp006308
  • 37. Bilski, J., Rutkowski, L., Smoląg, J., Tao, D. (2021). A novel method for speed training acceleration of recurrent neural networks. Information Sciences, 553, 266–279. https://doi.org/10.1016/j.ins.2020.10.025
  • 38. Big pharma is using AI and machine learning in drug discovery and development to save lives Web Site. Retrieved December 20, 2020, from https://www.businessinsider.com/ai-machinelearning-in-drug-discovery-development-2020
  • 39. Chan, H. C. S., Shan, H., Dahoun, T., Vogel, H., Yuan, S. (2019). Advancing Drug Discovery via Artificial Intelligence. Trends in Pharmacological Sciences, 40(8), 592–604. https://doi.org/10.1016/j.tips.2019.06.004
  • 40. Rubio, D. M. G., Schoenbaum, E. E., Lee, L. S., Schteingart, D. E., Marantz, P. R., Anderson, K. E., Platt, L. D., Baez, A., Esposito, K. (2010). Defining translational research: Implications for training. Academic Medicine, 85(3), 470–475. https://doi.org/10.1097/ACM.0b013e3181ccd618
  • 41. Merck Molecular Activity Challenge. Retrieved December 20, 2020, from https://www.kaggle.com/c/MerckActivity 42. DeepCodex: a deep code for gene expression data. Retrieved December 20, 2020, from http://deepcodex.org
  • 43. Donner, Y., Kazmierczak, S., Fortney, K. (2018). Drug Repurposing Using Deep Embeddings of Gene Expression Profiles. Molecular Pharmaceutics, 15(10), 4314–4325. https://doi.org/10.1021/acs.molpharmaceut.8b00284
  • 44. Xie, L., He, S., Song, X., Bo, X., Zhang, Z. (2018). Deep learning-based transcriptome data classification for drug-target interaction prediction. BMC Genomics, 19(7), 93-102. https://doi.org/10.1186/s12864-018-5031-0
  • 45. Vanhaelen, Q., Mamoshina, P., Aliper, A. M., Artemov, A., Lezhnina, K., Ozerov, I., Labat, I., Zhavoronkov, A. (2017). Design of efficient computational workflows for in silico drug repurposing. Drug Discovery Today, 22(2), 210–222. https://doi.org/10.1016/j.drudis.2016.09.019
  • 46. Aliper, A., Jellen, L., Cortese, F., Artemov, A., Semper, D. K., Moskalev, A., Swick, A. G., Zhavoronkov, A. (2017). Towards natural mimetics of metformin and rapamycin. Aging, 9(11), 2245–2268.https://doi.org/10.18632/aging.101319
  • 47. Gayvert, K. M., Madhukar, N. S., Elemento, O. (2016). A Data-Driven Approach to Predicting Successes and Failures of Clinical Trials. Cell Chemical Biology, 23(10), 1294–1301. https://doi.org/10.1016/j.chembiol.2016.07.023
  • 48. Mayr, A., Klambauer, G., Unterthiner, T., Hochreiter, S. (2016). DeepTox: Toxicity prediction using deep learning. Frontiers in Environmental Science, 3(80). https://doi.org/10.3389/fenvs.2015.00080
  • 49. Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., Veselov, M. S., Aladinskiy, V. A., Aladinskaya, A. V., Terentiev, V. A., Polykovskiy, D. A., Kuznetsov, M. D., Asadulaev, A., Volkov, Y., Zholus, A., Shayakhmetov, R. R., Zhebrak, A., Minaeva, L. I., Zagribelnyy, B. A., Lee, L. H., Soll, R., Madge, D., Xing, L., Guo, T., Aspuru-Guzik, A. (2019). Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology, 37(9), 1038–1040. https://doi.org/10.1038/s41587-019-0224-x
  • 50. Hessler, G., Baringhaus, K. H. (2018). Artificial intelligence in drug design. Molecules, 23(10), 2520.https://doi.org/10.3390/molecules23102520
  • 51. Riddick, G., Song, H., Ahn, S., Walling, J., Borges-Rivera, D., Zhang, W., Fine, H. A. (2011). Predicting in vitro drug sensitivity using random forests. Bioinformatics, 27(2), 220–224. https://doi.org/10.1093/bioinformatics/btq628
  • 52. Iorio, F., Knijnenburg, T. A., Vis, D. J., Bignell, G. R., Menden, M. P., Schubert, M., Aben, N., Gonçalves, E., Barthorpe, S., Lightfoot, H., Cokelaer, T., Greninger, P., Syk, E. V., Chang, H., Silva, H. D., Heyn, H., Deng, X., Egan, R.K., Liu, Q., Mironenko, T., Mitropoulos, X., Richardson, L., Wang, J., Zhang, T., Moran, S., Sayols, S., Soleimani, M., Tamborero, D., Lopez-Bigas, N., Ross-Macdonald, P., Esteller, M., Gray, N. S., Haber, D. A., Stratton, M. R., Benes, C. H., Wessels, L. F. A., Saez-Rodriguez, J., McDermott, U., Garnett, M. J. (2016). A Landscape of Pharmacogenomic Interactions in Cancer. Cell, 166(3), 740–754. https://doi.org/10.1016/j.cell.2016.06.017
  • 53. Cortés-Ciriano, I., Van Westen, G. J. P., Bouvier, G., Nilges, M., Overington, J. P., Bender, A., Malliavin, T. E. (2016). Improved large-scale prediction of growth inhibition patterns using the NCI60 cancer cell line panel. Bioinformatics, 32(1), 85–95. https://doi.org/10.1093/bioinformatics/btv529
  • 54. Tetko, I. V., Bruneau, P. (2004). Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database. Journal of Pharmaceutical Sciences, 93(12), 3103–3110. https://doi.org/10.1002/jps.20217
  • 55. Lusci, A., Pollastri, G., Baldi, P. (2013). Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules. Journal of Chemical Information and Modeling, 53(7), 1563–1575. https://doi.org/10.1021/ci400187y
  • 56. Koscielny, G., An, P., Carvalho-Silva, D., Cham, J. A., Fumis, L., Gasparyan, R., Hasan, S., Karamanis, N., Maguire, M., Papa, E., Pierleoni, A., Pignatelli, M., Platt, T., Rowland, W., Wankar, P., Pento, A. P., Burdett, T., Fabregat, A., Forbes, S., Gaulton, A., Gonzalez, C. Y., Hermjakob, H., Hersey, A., Jupe, S., Kafkas, Ş., Keays, M., Leroy, C., Lopez, F. J., Magarinos, M. P., Malone, J., McEntyre, J., Fuentes, A. M. P., O’Donovan, C., Papatheodorou, I., Parkinson, H., Palka, B., Paschall, J., Petryszak, R., Pratanwanich, N., Sarntivijal, S., Saunders, G., Sidiropoulos, K., Smith, T., Sondka, Z., Stegle, O., Tang, Y. A., Turner, E., Vaughan, B., Vrousgou, O., Watkins, X., Martin, M. J., Sanseau, P., Vamathevan, J., Birney, E., Barrett, J., Dunham, I. (2017). Open Targets: A platform for therapeutic target identification and Validation. Nucleic Acids Research, 45(1), 985–994. https://doi.org/10.1093/nar/gkw1055
  • 57. Ferrero, E., Dunham, I., Sanseau, P. (2017). In silico prediction of novel therapeutic targets using gene-disease association data. Journal of Translational Medicine, 15(1), 1–16. https://doi.org/10.1186/s12967-017-1285-6
  • 58. Cavasotto, C. N., Di Filippo, J. I. (2021). Artificial intelligence in the early stages of drug discovery. Archives of Biochemistry and Biophysics, 698, 108730. https://doi.org/10.1016/j.abb.2020.108730
  • 59. Plante, A., Shore, D. M., Morra, G., Khelashvili, G., Weinstein, H. (2019). A Machine Learning Approach for the Discovery of Ligand-Specific Functional Mechanisms of GPCRs. Molecules, 24(11), 2097. http://dx.doi.org/10.3390/molecules24112097
  • 60. Díaz, Ó., Dalton, J. A. R., Giraldo, J. (2019). Artificial Intelligence: A Novel Approach for Drug Discovery. Trends in Pharmacological Sciences, 40(8), 550–551. https://doi.org/10.1016/j.tips.2019.06.005
  • 61. Ferraro, M., Decherchi, S., De Simone, A., Recanatini, M., Cavalli, A., Bottegoni, G. (2020). Multi-target dopamine D3 receptor modulators: Actionable knowledge for drug design from molecular dynamics and machine learning. European Journal of Medicinal Chemistry, 188, 111975.https://doi.org/10.1016/j.ejmech.2019.111975
  • 62. Beck, B. R., Shin, B., Choi, Y., Park, S., Kang, K. (2020). Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Computational and Structural Biotechnology Journal, 18, 784– 790.https://doi.org/10.1016/j.csbj.2020.03.025
  • 63. Green, D. V. S., Pickett, S., Luscombe, C., Senger, S., Marcus, D., Meslamani, J., Brett, D., Powell, A., Masson, J. (2020). BRADSHAW: a system for automated molecular design. Journal of Computer-Aided Molecular Design, 34(7), 747–765. https://doi.org/10.1007/s10822-019- 00234-8
  • 64. Camodeca, C., Nuti, E., Tepshi, L., Boero, S., Tuccinardi, T., Stura, E. A., Poggi, A., Zocchi, M. R., Rossello, A. (2016). Discovery of a new selective inhibitor of A Disintegrin and Metalloprotease 10 (ADAM-10) able to reduce the shedding of NKG2D ligands in Hodgkin’s lymphoma cell models. European Journal of Medicinal Chemistry, 111, 193–201. https://doi.org/10.1016/j.ejmech.2016.01.053
  • 65. Healy, E. F., Romano, P., Mejia, M., Lindfors, G. (2010). Acetylenic inhibitors of ADAM10 and ADAM17: In silico analysis of potency and selectivity. Journal of Molecular Graphics and Modelling, 29(3), 436–442. https://doi.org/10.1016/j.jmgm.2010.08.006
  • 66. Tippmann, F., Hundt, J., Schneider, A., Endres, K., Fahrenholz, F. (2009). Up‐regulation of the α‐secretase ADAM10 by retinoic acid receptors and acitretin. The FASEB Journal, 23(6), 1643– 1654.https://doi.org/10.1096/fj.08-121392
  • 67. Altmeppen, H. C., Prox, J., Krasemann, S., Puig, B., Kruszewski, K., Dohler, F., Bernreuther, C., Hoxha, A., Linsenmeier, L., Sikorska, B., Liberski, P. P., Bartsch, U., Saftig, P., Glatze, M. (2015). The sheddase ADAM10 is a potent modulator of prion disease. ELife, 2015(4), 1–50. https://doi.org/10.7554/eLife.04260
  • 68. Kohutek, Z. A., DiPierro, C. G., Redpath, G. T., Hussaini, I. M. (2009). ADAM-10-Mediated NCadherin Cleavage Is Protein Kinase C-α Dependent and Promotes Glioblastoma Cell Migration. Journal of Neuroscience, 29(14), 4605–4615. https://doi.org/10.1523/JNEUROSCI.5126- 08.2009
  • 69. Woods, N., Trevino, J., Coppola, D., Chellappan, S., Yang, S., Padmanabhan, J. (2015). Fendiline inhibits proliferation and invasion of pancreatic cancer cells by interfering with ADAM10 activation and β-catenin signaling. Oncotarget, 6(34), 35931–35948. https://doi.org/10.18632/oncotarget.5933
  • 70. Shi, T., Huang, S., Chen, L., Heng, Y., Kuang, Z., Xu, L., Mei, H. (2020). A molecular generative model of ADAM10 inhibitors by using GRU-based deep neural network and transfer learning. Chemometrics and Intelligent Laboratory Systems, 205, 104122. https://doi.org/10.1016/j.chemolab.2020.104122
  • 71. Segler, M. H. S., Kogej, T., Tyrchan, C., Waller, M. P. (2018). Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Central Science, 4(1), 120–131. https://doi.org/10.1021/acscentsci.7b00512
  • 72. Luo, J. (2016). CRISPR/Cas9: From Genome Engineering to Cancer Drug Discovery. Trends in Cancer, 2(6), 313–324. https://doi.org/10.1016/j.trecan.2016.05.001
  • 73. Scott, A. (2018). A CRISPR path to drug discovery. Nature, 555, 10–11. https://doi.org/10.1038/d41586-018-02477-1
  • 74. Wallach, I., Dzamba, M., Heifets, A. (2015). AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery. 1–11. Retrieved from http://arxiv.org/abs/1510.02855
  • 75. Spitzer, R., Jain, A. N. (2012). Surflex-Dock: Docking benchmarks and real-world application. Journal of Computer-Aided Molecular Design, 26(6), 687–699. https://doi.org/10.1007/s10822- 011-9533-y
  • 76. Allen, W. J., Balius, T. E., Mukherjee, S., Brozell, S. R., Moustakas, D. T., Lang, P. T., Case, D. A., Kuntz, I. D., Rizzo, R. C. (2015). DOCK 6: Impact of new features and current docking performance. Journal of Computational Chemistry, 36(15), 1132–1156. https://doi.org/10.1002/jcc.23905
  • 77. Kuenzi, B. M., Park, J., Fong, S. H., Sanchez, K. S., Lee, J., Kreisberg, J. F., Ma, J., Ideker, T. (2020). Predicting Drug Response and Synergy Using a Deep Learning Model of Human Cancer Cells. Cancer Cell, 38(5), 672-684. https://doi.org/10.1016/j.ccell.2020.09.014
  • 78. Hasan Mahmud, S. M., Chen, W., Jahan, H., Dai, B., Din, S. U., Dzisoo, A. M. (2020). DeepACTION: A deep learning-based method for predicting novel drug-target interactions. Analytical Biochemistry, 610, 113978. https://doi.org/10.1016/j.ab.2020.113978
  • 79. Wan, F., Zhu, Y., Hu, H., Dai, A., Cai, X., Chen, L., Gong, H., Xia, T., Yang, D., Wang, M. W., Zeng, J. (2019). DeepCPI: A Deep Learning-based Framework for Large-scale in silico Drug Screening. Genomics, Proteomics and Bioinformatics, 17(5), 478–495. https://doi.org/10.1016/j.gpb.2019.04.003
  • 80. Lagunin, A., Zakharov, A., Filimonov, D., Poroikov, V. (2011). QSAR modelling of rat acute toxicity on the basis of PASS prediction. Molecular Informatics, 30(2–3), 241–250. https://doi.org/10.1002/minf.201000151
  • 81. Soufan, O., Ba-Alawi, W., Afeef, M., Essack, M., Kalnis, P., Bajic, V. B. (2016). DRABAL: novel method to mine large high-throughput screening assays using Bayesian active learning. Journal of Cheminformatics, 8(1), 1–14. https://doi.org/10.1186/s13321-016-0177-8
  • 82. Malandraki-Miller, S., Riley, P. R. (2021). Use of artificial intelligence to enhance phenotypic drug discovery. Drug Discovery Today. https://doi.org/10.1016/j.drudis.2021.01.013
  • 83. Zhong, F., Xing, J., Li, X., Liu, X., Fu, Z., Xiong, Z., Lu, D., Wu, X., Zhao, J., Tan, X., Li, F., Luo, X., Li, Z., Chen, K., Zheng, M., Jiang, H. (2018). Artificial intelligence in drug design. Science China Life Sciences, 61(10), 1191–1204. https://doi.org/10.1007/s11427-018-9342-2
  • 84. Kalliokoski, T., Kramer, C., Vulpetti, A., Gedeck, P. (2013). Comparability of Mixed IC50 Data -A Statistical Analysis. PLoS ONE, 8(4), 1-11. https://doi.org/10.1371/journal.pone.0061007
  • 85. Solomon, S. M. (2020). Genome editing in animals: why FDA regulation matters. Nature Biotechnology, 38(2), 142–143. https://doi.org/10.1038/s41587-020-0413-7
  • 86. Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., Ferrero, E., Agapow, P.M., Zietz, M., Hoffman, M. M., Xie, W., Rosen, G. L., Lengerich, B.J., Israeli, J., Lanchantin, J., Woloszynek, S., Carpenter, A. E., Shrikumar, A., Xu, J., Cofer, E.M. Lavender, C.A., Turaga, S. C., Alexandari, A. M., Lu, Z., Harris, D. J., DeCaprio, D., Qi, Y., Kundaje, A., Peng, Y., Wiley, L. K., Segler, M. H. S., Boca, S. M., Swamidass, S. J., Huang, A., Gitter, A., Greene, C. S. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface, 15(141). https://doi.org/10.1101/142760
  • 87. Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., Song, D. (2019). The secret Sharer: Evaluating and testing unintended memorization in neural networks. In Proceedings of the 28th USENIX Security Symposium, (pp. 267–284). Santa Clara, CA, USA.
  • 88. Voosen, P. (2017). The AI detectives. Science, 357(6346), 22–27. https://doi.org/10.1126/science.357.6346.22
  • 89. Tishby, N., Zaslavsky, N. (2015). Deep learning and the information bottleneck principle. In Proceedings of the 2015 IEEE Information Theory Workshop (ITW), (pp. 1-5). Jeju Island, Korea.https://doi.org/10.1109/ITW.2015.7133169
  • 90. Merk, D., Friedrich, L., Grisoni, F., Schneider, G. (2018). De Novo Design of Bioactive Small Molecules by Artificial Intelligence. Molecular Informatics, 37(1-2). https://doi.org/10.1002/minf.201700153
  • 91. Lake, F. (2019). Artificial intelligence in drug discovery: what is new, and what is next? Future Drug Discovery, 1(2). https://doi.org/10.4155/fdd-2019-0025
  • 92. Hassan Baig, M., Ahmad, K., Roy, S., Mohammad Ashraf, J., Adil, M., Haris Siddiqui, M., Khan, S., Amjad Kamal, M., Provazník, I., Choi, I. (2016). Computer Aided Drug Design: Success and Limitations. Current Pharmaceutical Design, 22(5), 572–581. https://doi.org/10.2174/1381612822666151125000550
  • 93. Zhou, Y., Wang, F., Tang, J., Nussinov, R., Cheng, F. (2020). Artificial intelligence in COVID19 drug repurposing. The Lancet Digital Health, 2(12), 667–676. https://doi.org/10.1016/S2589- 7500(20)30192-8
  • 94. Lecun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Ankara Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • ISSN: 1015-3918
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Ankara Üniversitesi Eczacılık Fakültesi
Sayıdaki Diğer Makaleler

KATI LİPİT NANOPARTİKÜLLER VE BEYNE ÖZGÜ İLAÇ TAŞIYICI SİSTEM OLARAK UYGULAMALARI

Mahmut Ozan TOKSOY, Fahriye Figen TIRNAKSIZ

BİYOAKTİF MOLEKÜL METİL 4-BROMO-2-FLOROBENZOAT'IN İN SİLİKO İLAÇ DEĞERLENDİRMESİ VE ARAŞTIRMASI

Maria JULİE, T. PRABHU, Fazılath Basha ASİF, S. MUTHU

MANTARLARIN BİYOLOJİK AKTİVİTELERİ İLE İLGİLİ İN VİTRO, İN VİVO VE KLİNİK DEĞERLENDİRMELER

Ceren ÖZTÜRK, Funda ATİLA

HASTANELERDE SIKLIKLA KULLANILAN BAZI DEZENFEKTAN VE ANTİSEPTİKLERİN ANTİMİKROBİYAL AKTİVİTELERİNİN ARAŞTIRILMASI

Süleyman KAYAN, Nurten ALTANLAR

CuO VE GRAFİT TOZUNA DAYALI ELEKTROKİMYASAL NANOSENSÖR İMALATI VE GERÇEK NUMUNELERDE OP (ORGANOFOSFOR) PESTİSİTLERİNİN ESER MADDE ANALİZİ İÇİN UYGULAMASI

Ratnesh DAS, Aayushı CHANDERIYA

TRİİYODOANİLİN’İN SENTEZLENMESİ, NANOSÜSPANSİYONLARININ HAZIRLANMASI, İN VİTRO KARAKTERİZASYONU VE RADYOKONTRAST ÖZELLİKLERİNİN İNCELENMESİ

Mehmet KOCA, Emrah ÖZAKAR, Rukiye SEVİNÇ ÖZAKAR

PULMONER ARTERİYEL HİPERTANSİYON TEDAVİSİNDE GÜNCEL YAKLAŞIMLAR

Cenk YILDIZ, Burcu DEVRİM

COVİD-19 PANDEMİSİNİN TOPLUM ECZACILIĞI HİZMETLERİNE ETKİLERİ

Muammer ÇALIKUŞU, Gülsen GÜNEŞ, Gülbin ÖZÇELİKAY

BAZI NAFTOKİNON TÜREVLERİ İLE İLAÇ MADDELERİ ARASINDAKİ ETKİLEŞİM ÜRÜNLERİNİN YAPISININ İNCELENMESİ

Anastasiia DONCHENKO, Kateryna MİEDVİEDİEVA, Oleksii VOSKOBOINIK, Svitlana VASYUK, Serhii KOVALENKO

KULLANILMIŞ KOZMETİK ÜRÜNLERDEN İZOLE EDİLEN AEROP BAKTERİLER VE ANTİBİYOTİK DİRENCİNİN DEĞERLENDİRİLMESİ

Ömer AKGÜL, Kadir BAKAN