Elmada mavi küfe neden olan Penicillium expansum’a karşı bazı bor tuzlarının antifungal etkisi
Mavi küf hastalığına neden olan Penicillium expansum yumuşak çekirdekli meyvelerde hasat sonrası görülen önemli patojenlerden biri olup, meyve enfeksiyonu için yaraya ihtiyaç duyan nekrotrofik bir fungustur. Bu çalışmada, etidot-67 ve boraks dekahidratın P. expansum’a karşı etkinliği hem in vitro hem de in vivo denemelerle değerlendirilmiştir. In vitro denemelerde, hem etidot-67 hem de boraks dekahidrat P. expansum’un misel gelişmesini, spor çimlenmesini ve çim tüpü uzunluğunu güçlü bir şekilde engellemiştir. Her iki tuzun engelleyici etkileri onların artan konsantrasyonları ile yakından ilişkili bulunmuştur. Bor tuzları P. expansum'un misel gelişmesini %0.25 konsantrasyonda tamamen engellerken, bu tuzlar fungusun spor çimlenmesini ve çim tüp uzamasını %0.125 konsantrasyonunda tamamen engellemiştir. Ayrıca, test edilen tuzların toksisitelerinin birbirine yakın olduğu, yani etidot-67 ve boraks dekahidratın EC50 değerlerinin sırasıyla 0.067 ve 0.071 olduğu belirlenmiştir. Etidot-67 ve boraks dekahidratın minimum engelleyici konsantrasyon (MIC) değerleri %0.25 iken, aynı tuzların minimum fungisidal konsantrasyon (MFC) değerleri %1'den büyük bulunmuştur. In vivo denemelerde, fungus inokülasyonundan sonra (tedavi edici aktivite), etidot-67 ve boraks dekahidratın %3.0 konsantrasyonu uygulanmış elma meyvelerinde mavi küf gelişimi, kontrol uygulaması ile kıyaslandığında, sırasıyla %92.8 ve %78.9’a kadar önemli derecede azalmıştır (P<0.05). Bununla birlikte, aynı konsantrasyonda, fungus (1x104 konidi mL-1) ile inokülasyondan önce (koruyucu aktivite) bor tuzları ile muamele edilen elma meyvelerindeki lezyon alanı kontrol uygulaması ile kıyaslandığında sırasıyla %94.3 ve %98.3 azalmıştır. Bu sonuçlar, bor tuzlarının P. expansum'un neden olduğu elma meyvesinin hasat sonrası hastalığının kontrolü için sentetik fungisitlere potansiyel bir alternatif olarak kullanılabileceğini göstermektedir.
Antifungal effect of some boron salts against Penicillium expansum, the casual agent of blue mold of apple
Penicillium expansum causing blue mold disease is one of the most important pathogens of pome fruit and is a necrotrophic fungus that requires wounds to infect the fruit. In the present study, the efficacy of etidot-67 and borax decahydrate against P. expansum were evaluated in both in vitro and in in vivo. In in vitro experiments, both etidot-67 and borax decahydrate strongly inhibited mycelial growth, spore germination and germ tube elongation of P. expansum. The inhibitory effects of both salts were closely correlated with their increasing concentrations. While boron salts completely inhibited the mycelial growth of P. expansum at %0.25 concentration, these salts completely inhibited spore germination and germ tube elongation of the fungus at %0.125 concentration. Additionally, it was determined that the toxicity of the salts tested were close to each other, namely EC50 values of Etidot-67 and borax decahydrate were 0.067 and 0.071, respectively. While the minimum inhibition concentration (MIC) values of the etidot-67 and borax decahydrate were %0.25, the minimum fungicidal concentration (MFC) values of the same salts were found to be greater than 1%. In in vivo experiments, blue mold development in apple fruits treated with 3.0% concentration of etidot-67 and borax decahydrate after fungal inoculation (curative activity) was significantly reduced by %92.8 and %78.9, respectively, compared with the control treatment (P<0.05). However, at same concentration, lesion area on apple fruits treated with the salts before inoculation with the fungus (1x104 conidia mL-1) (preventive activity) reduced by %94.3 and %98.3, respectively. These results show that both boron salts can be used as a potential alternative to synthetic fungicides for the control of the postharvest disease of apple fruit caused by P. expansum.
___
- Akhtar, K.P., Matin, M., Mirza, J.H., Shakir, A.S.,
Rafique, M., 1994. Some studies on post-harvest
diseases of tomato fruits and their chemical control.
Pakistan Journal Phytopathology, 6(2): 125-129.
- Anonymous, 2019a.
http://www.fao.org/faostat/en/#data/QC (Erişim
tarihi: 18.01.2019)
- Anonymous, 2019b. Türkiye İstatistik Kurumu (TÜİK).
https://biruni.tuik.gov.tr/medas/?locale=tr (Erişim
tarihi: 27.04.2019).
- Anonymous, 2019c. Bitki koruma ürünleri veri tabanı
programı. https://bku.tarim.gov.tr. (Erişim tarihi: 15
Ocak 2019).
- Arslan, U., Ilhan, K., Karabulut, O.A., 2006. Evaluation
of food additives and low-toxicity compounds for
the control of bean rust and wheatleaf rust. Journal
of Phytopathology, 154: 534-541.
- Arslan, U., Ilhan, K., Karabulut, O.A., 2013. Evaluation
of the use of ammonium bicarbonate and oregano
(Origanum vulgare ssp. hirtum) extract on the
control of apple scab. Journal of Phytopathology,
161: 382-388.
- Cao, B., Li, H., Tian, S., Qin, G. 2012. Boron improves
the biocontrol activity of Cryptococcus laurentii
against Penicillium expansum in jujube fruit.
Postharvest Biology and Technology, 68: 16-21.
- Conway, W.S., Leverentz, B., Janisiewicz, W.F.,
Blodgett, A.B., Saftner, R.A,. Camp, M.J., 2004.
Integrating heat treatment, biocontrol and sodium
bicarbonate to reduce postharvest decay of apple
caused by Colletotrichum acutatum and Penicillium
expansum. Postharvest Biology Technology, 34: 11-
20.
- Conway, W.S., Leverentz, B., Janisiewicz, W.F.,
Saftner, R.A., Camp, M.J., 2005. Improving
biocontrol using antagonist mixtures with heat
and/or sodium bicarbonate to control postharvest
decay of apple fruit Postharvest Biology
Technology, 36: 235-244.
- Droby, S., Wisniewski, M.E., El Ghaouth, A., Wilson,
C. 2003. Influence of food additives on the control
of postharvest rots of apple and peach and efficacy
of the yeast-based biocontrol product Aspire.
Postharvest Biology and Technology, 27: 127-135.
- Gabler, F.M., Smilanick, J.L., 2001. Postharvest control
of table grape gray mold on detached berries with
carbonate and bicarbonate salts and disinfectants.
American Journal of Enology and Viticulture, 52(1):
12-20.
- Grant, I.R., Patterson, M.F., 1991. Effect of irradiation
and modified atmosphere packaging on the
microbiological safety of minced pork stored under
temperature abuse conditions. International Journal
of Food Science Tecnology. 26(5): 521-533.
- https://doi.org/10.1111/j.1365-2621.1991.tb01997.x
Frisvard, J.C., Samson, R.A., 2004. Polyphasic
taxonomy of Penicillium subgenus Penicillium A
guide to identification of food and air-borne
terverticillate Penicillia and their mycotoxins.
Studies in Mycology, 49: 1-174.
- Hervieux, V., Yaganza, E.S., Arul, J., Tweddell, R.J.,
2002. Effect of organic and inorganic salts on the
development of Helminthosporium solani, the causal
agent of potato silver scurf. Plant Disease, 86: 1014-
1018.
- Janisiewicz, W.J., 1998, Biocontrol of Postharvest
Diseases of Temperate Fruits: Challenges and
Opportunities. In: Plant - Microbe Interactions and
Biological Control. J. Boland and L.D. Kaykendall,
eds. Marcel-Dekker, Inc, New York, 171-189.
- Karabulut, Ö.A., Arslan, Ü., Kuruoğlu, G., İlhan, K.,
2005. Integrated control of postharvest diseases of
sweet cherry with yeast antagonists and sodium
bicarbonate applications within a hydrocooler.
Postharvest Biology and Technology, 37: 135-141.
- Li, Y., Yang, Z., Bi, Y., Zhang, J., Wang, D., 2012.
Antifungal effect of borates against Fusarium
sulphureum on potato tubers and its possible
mechanisms of action. Postharvest Biology and
Technology, 74: 55-61.
- Mari, M., Leoni, O., Iori, R., Cembali, T., 2002.
Antifungal vapour-phase activity of allylisothiocyanate against Penicillim expansum on
pears. Plant Pathology, 51: 231-236.
- Mecteau, M.R., Arul, J., Tweddell, R.J., 2002. Effect of
organic and inorganic salts on the growth and
development of Fusarium sambucinum, a causal
agent of potato dry rot. Mycological Research, 106:
688-696.
- Nunes, C., Usall, J., Teixido, N., de Eribe, X.O., Vinas,
I., 2001. Control of post-harvest decay of apples by
preharvest and post-harvest application of
ammonium molybdate. Pest Management Science,
57: 1093-1099.
- Palou, L., Marcilla, A., Rojas-Argudo, C., Alonso, M.,
Jacas, J.A., Angel del Rio, M., 2007. Effects of Xray irradiation and sodium carbonate treatments on
postharvest Penicillium decay and quality attributes
of clementine mandarins. Postharvest Biology and
Technology, 46: 252-261.
- Punja, Z.K., Grogan, R.G., 1982. Effects of inorganic
salts, carbonate-bicarbonate anions, ammonia, and
the modifying influence of pH on sclerotial
germination of Sclerotium rolfsii. Phytopathology
72: 635-639.
- Qin, G., Tian, S., Chan, Z., Li, B., 2007. Crucial role of
antioxidant proteins and hydrolytic enzymes in
pathogenicity of Penicillium expansum. Molecular
& Cellular Proteomics, 6: 425-438.
- Qin, G., Zong, Y., Chen, Q., Hua, D., Tian, S., 2010.
Inhibitory effect of boron against Botrytis cinerea on
table grapes and its possible mechanisms of action.
International Journal of Food Microbiology, 138:
145-150.
- Rolshausen, P.E., Gubler, W.D. 2005. Use of boron for
the control of Eutypa dieback of grapevines. Plant
Disease 89: 734-738.
- Shi, X., Li, B., Qin, G., Tian, S., 2012. Mechanism of
antifungal action of borate against Colletotrichum
gloeosporioides related to mitochondrial degradation
in spores. Postharvest Biology and Technology, 67:
138-143.
- Spadaro, D., Vola, R., Piano, S., Gullino, M.L., 2002.
Mechanisms of action and efficacy of four isolates
of the yeast Metschnikowia pulcherrima active
against postharvest pathogens on apples. Postharvest
Biology and Technology, 24: 123-134.
- Snowdon, A.L., 1990. A Colour Atlas of Postharvest
Diseases and Disorders of Fruits and Vegetables:
Vol. 1: General Introdiction and Fruits. Wolfe
Scientific, London, Great Britain, 302 pp.
- Temur, C., Tiryaki, O., 2013. Combination of
irradiation and sodium carbonate to control
postharvest Penicillium decay of apples. The Journal
of Turkish Phytopathology, 42: 47-56.
- Thomidis, T., Exadaktylou, E., 2010. Effect of boron on
the development of brown rot (Monilinia laxa) on
peaches. Crop Protection, 29: 572–576.
- Thompson, D.P., 1989. Fungitoxic activity of essential
oil componentson food storage fungi. Mycologia,
81: 151-153.
- Tripathi, P., Dubey, N.K., Banerji, R., Chansouria,
J.P.N., 2004. Evaluation ofsome essential oils as
botanical fungi toxicants in management of
postharvest rotting of citrus fruits. World J.
Microbiol Biotechnology, 20: 317-321.
- Türkkan, M., Erper, İ., 2015. Inhibitory influence of
organic and inorganic sodium salts and synthetic
fungicides againts bean root rot pathogens. Gesunde
Pflanzen, 67: 83-94.
- Türkkan, M., Özcan, M., Erper, İ. 2017. Antifungal
effect of carbonate and bicarbonate salts against
Botrytis cinerea, the casual agent of grey mould of
kiwifruit. Akademik Ziraat Dergisi, 6(2): 103-110.
- Wisniewski, M.E, Droby, S., El-Ghaouth, A., Wilson,
C.L, 1998. The use of food additives to control
postharvest decay and enhance biocontrol activity of
yeast antagonist, in Proc Internat Congress Plant
pathol, August 9-16, Edinburg, Scotlant, (Abstract
5.2.61).
- Vilanova, L., Vinas, I., Torres, R., Usall, J., BuronMoles, G., Teixidó, N., 2014. Increasing maturity
reduces wound response and lignification processes
against Penicillium expansum (pathogen) and
Penicillium digitatum (non-host pathogen) infection
in apples. Postharvest Biology and Technology, 88:
54-60.
- Zhang, J., Timmer, L.W., 2007. Preharvest application
of fungicides for postharvest disease control on early
season tangerine hybrids in Florida. Crop Protection,
26: 886-893.