Torulaspora delbrueckii ve Trichoderma atroviride Kullanılarak Pirinadan (Zeytin Katı Atığı) Biyoaroma Üretimi

Bu çalışmada, Torulaspora delbrueckii ve Trichoderma atroviride kullanılarak, pirinadan mikrobiyal fermentasyon yoluyla doğal aroma maddelerinin üretilme olanaklarının araştırılması amaçlanmıştır. Bu amaçla, Torulaspora delbrueckii ve Trichoderma atroviride ile %10'luk pirina solüsyonunun hem erlen hem de biyoreaktör düzeyinde 30oC'de 120 saat fermentasyonu gerçekleştirilmiştir. Her iki fermentasyon boyunca mikroorganizmaların pirinadaki gelişimleri incelenmiştir. T. delbrueckii ve T. atroviride tarafından üretilen aroma maddelerinin tanımlanması ve miktarlarının belirlenmesi gaz kromatografisi kütle spektrometresi ve gaz kromatografisi-olfaktometre ile yapılmıştır. T. delbruecki ve T. atroviride'nin erlen düzeyinde maksimum hücre sayısı artışının sırasıyla 1.49 ve 1.07 log kob/mL olduğu belirlenirken, biyorekatör düzeyindeki hücre artışları ise 2.23 ve 0.92 log kob/mL düzeyinde olduğu tespit edilmiştir. 0-120 saat fermentasyon süresinde T. delbrueckii ve T. atroviride için spesifik üreme hızları sırasıyla 0.079/saat ve 0.0299/saat olarak hesaplanmıştır. T.delbrueckii'nin pirinadan fenil etil alkol (gül) ve mentol (nane), T. atroviride'nin ise 1 okten-3-ol (mantar) ve 2-oktenol (yanık, kirli) ürettiği belirlenmiştir. Mikrobiyal fermentasyon sonucunda üretilen fenil etil alkol, mentol, 1-okten-3-ol ve 2 oktenol'un maksimum üretim miktarları sırasıyla 6.69±0.01 µg/kg, 3.50±0.69 µg/kg, 330.75 µg/kg ve 25.65 µg/kg olarak belirlenmiştir. En yüksek verimlilik değerinin 88.81 µg/ kg.saat ile 1-okten-3-ol'e ait olduğu tespit edilmiştir. Yapılan duyusal analizler sonucunda, fermente pirina örneklerinde ıslak bulgur, toprak, ıslak kirli havlu, fermente ve mantar aromalarının yüksek yoğunlukta olduğu belirlenmiştir. Yüksek yoğunlukta algılan söz konusu bu aromalar, miktarı artan mentol, fenil etil alkol, 1-okten-3-ol ve 2-oktenol ile ilişkilendirilebilir

Production of Bioflavor from Olive Pomace (Olive Mill Waste) by Using Torulasproa delbrueckii and Trichoderma atroviride

In this study, it was aimed that production of natural flavor compounds from olive pomace via microbial fermentation by using Torulaspora delbrueckii and Trichoderma atroviride. For this purpose, fermentation of olive pomace solution (10%) by Torulaspora delbrueckii and Trichoderma atroviride was carried out both shake flask and bioreactor scale at 30oC for 120 hours. Growth of microorganisms in olive pomace was investigated during fermentation at both scales. Identification and quantification of flavor compounds which are produced by T. delbrueckii and T. atroviride were determined by gas chromatography mass spectrometry and gas chromatography olfactometry. It was found that the maximum cell increases of T. delbrueckii and T. atroviride were 1.49 log cfu/mL and 1.07 log cfu/mL respectively in shake flakes, while at the bioreactor scale fermentation, the maximum cell increases were determined as 2.23 log cfu/mL and 0.092 log cfu/mL for respectively. Specific growth rate of T. delbrueckii and T. atroviride were calculated as 0.079/hour and 0.0299/hour, respectively during 120 hour fermentation. It was determined that T. delbrueckii produces phenyl ethyl alcohol (rose) and menthol (fresh, mint), T. atroviride produces 1-octen-3-ol (mushroom) and 2octenol (burnt, dirty). The maximum amounts of phenyl ethyl alcohol, menthol, 1-octen-3-ol and 2-octenol produced by microbial fermentation were determined as 6.69±0.01 µg/kg, 3.50±0.69 µg/kg, 330.75 µg/kg and 25.65 µg/kg, respectively. The highest productivity was found as 88.81 µg/ kg.hour for 1-octen-3-ol. Based on the sensory analysis, wet bulgur, earthy, wet towel, fermented and mushroom were determine at higher intensity in fermented olive pomace. These flavors can be associated with phenyl ethyl alcohol, 1-octen-3-ol and 2-octenol

___

  • [1] Cabaroğlu, T., Yılmaztekin, T., 2010. Aroma Biyoteknolojisi. In: Gıda Biyoteknolojisi, Edited by Necla A., Nobel Yayın Dağıtım Tic. Ltd.Şti., Ankara, s: 375-390.
  • [2] Anonim, 2013.An Overview of the Global Flavours and Fragrances Market, 6th Edition, IAL Consultant Market Report, http://www.ialconsultants.com/website/press2009.a sp. Erişim tarihi: 10/02/2013.
  • [3] Anonim, 2012. http://www.leffingwell.com/chirality/limonene.htm, Erişim tarihi: 10/05 2012.
  • [4] Ziegel,H., 2007.A dynamic business with taste-the flavour industry. In:Flavourings: Production, Composition, Applications, Regulations, Edited by Ziegler, H., Wiley-VCH Verlag GmbH & Co.,Weinheim, Almanya, p:1-15.
  • [5] Vandamme, E.J., Soetaer, W., 2002. Bioflavours and fragrances via fermentation and biocatalysis. Journal Chemical Technology and Biotechnology 77:1323–1332.
  • [6] Gounaris, Y., 2010. Biotechnology for the production of essential oils, flavours and volatile Isolates. a review. Flavour and Fragrance Journal 25:367-386.
  • [7] Dastager, G.S., 2009. Aroma Compounds, In: Biotechnology for Agro-Industrial Residues Utilisation. Edited by Singh nee’Nigam, P., Pandey ,A, A. Springer Science +Business Media, p.105- 127.
  • [8] Longo, M.A., Sanroman, M.A., 2006. Production of food aroma compounds: microbial and enzymatic methodologies. Food Technology and Biotechnology 44 (3): 335–353.
  • [9] Reineccius, G., 1994. The flavor chemistry, In: Source Book of Flavors. Edited by Reineccius, G., Aspen Publisher, Maryland, ABD, p: 61-115.
  • [10] Xu, P., Hua, D., Ma, C., 2007. Microbial transformation of propenylbenzenes for natural flavour production. Trends in Biotechnology 25: 571-576.
  • [11] Vandamme, E.J., 2009. Agro-industrial residue utilization for industrial biotechnology products. In: Biotechnology for Agro-Industrial Residues Utilisation. Edited by Singh nee’Nigam, P., Pandey, A., A. Springer Science +Business Media, p. 3-13.
  • [12] Araujo, A.A., Pastore, M.G., Berger, G.R., 2002. Production of coconut aroma by fungi cultivation in solid-state fermentation. Applied Biochemistry and Biotechnology 98: 747-751.
  • [13] Besson, I., Creuly, C., Gros, J.B., Larroche, C., 1997. Pyrazine production by Bacillus subtilis in solid state fermentation on soybeans. Applied Microbiology and Biotechnology 47:489–495.
  • [14] Christen, P., Meza, J.C., Revah, S., 1997. Fruity aroma production in solid state fermentation by Ceratocystis fmbriata: Influence of the substrate type and the presence of precursors. Mycological Research 101(8): 911-919.
  • [15] Lalou, S., Mantzouridon, F., Paraskevopoulou, A., Bugarski, B., Levic, S., Nedovic, V., 2013. Bioflavour production from orange peel hydrolysate using immobilized Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 97(21):9397-9407.
  • [16] Pandey, A., Soccol, C.R., Mitchell, D., 2000. New developments in dolid state fermentation: Ibioprocesses and products. Process Biochemistry 35: 1153-1169.
  • [17] Rossi, S.C., Vandenberghe, L.P.S., Pereira, B.M.P., Gago, F.D., Rizzolo, J.A., Pandey, A., Soccol, C.R., Medeiros, A.B.P., 2009. Improving fruity aroma production by fungi in SSF using citric pulp. Food Research International 42: 484–486.
  • [18] Urit, T., Loser, C., Wunderlich, M., Bley, T., 2011. Formation of ethyl Aacetate by Kluyveromyces marxianus on whey: studies of the ester stripping. Bioprocess and Biosystem Engineering 34:547– 559.
  • [19] Başçetinçelik, A., Öztürk, H.H., Karaca, C., 2009. Türkiye’de tarımsal biyokütleden enerji üretimi olanakları. Tesisat Mühendisliği 109, 7-13.
  • [20] Elibol, M., Yaşa, I,, Karaçancı, S., Özsoy, G., 2008. Zeytinyağı işletmelerin katı (pirina) ve sıvı (karasu) atıklardan mikrobiyal lipaz üretimi. TÜBİTAK projesi no:106M464, Ankara-Turkey.
  • [21] Nas S., Gökalp H.Y., Ünsal M., 2001. Bitkisel Yağ Teknolojisi, Pamukkale Üniversitesi, MühendislikFakültesi, Ders Kitapları Yayın No: 005 Denizli. s: 329.
  • [22] AOAC 2000. International Official Methods of Analysis of AOAC International, 17th edn. AOAC International, Gaithersburg. [23] Atlas, M.R., 2004. Handbook of Microbiological Media, CRC Press, Boca Raton, USA.
  • [24] Temiz, A., 2008. Genel Mikrobiyoloji Uygulama Teknikleri. Hatiboğlu Yayınevi, Ankara, s: 291.
  • [25] Güneşer, O., 2014. Tarımsal atıklardan biyoaroma üretimi ve optimizasyonu, Çanakkale Onsekiz mart Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, Doktora tezi, Çanakkale, 175 syf.
  • [26] Ray, B., 2004. Microbial growth characteristics. In: Fundamental Food Microbiology. Edited by Ray B., CRC Press, Boca Raton, Florida, p 57-67.
  • [27] Pawliszyn, J., 2012. Theory of solid phase microextraction. In: Handbook of Solid Phase Microextraction. Edited by Pawliszyn J., Waltham, Elsevier Inc, MA, USA, p.13-57.
  • [28] Avsar, Y.K., Karagul-Yuceer, Y., Drake, M.A., Singh, T.K., Yoon, Y., Cadwallader, K.R., 2004. Characterization of nutty flavor in cheddar cheese. Journal of Dairy Science 87:1999–2010.
  • [29] Meilgaard, M., Civille, G.V., Carr, B.T., 1999. Sensory Evaluation Techniques, CRC Pres, Inc. Boca Raton, FL.p. 448.
  • [30] Sheskin, D.J., 2004. Parametric and Nonparametric Statistical Procedures. Chapman & Hall/CRC, New York, USA.
  • [31] Baeta-Hall, L., Saagua, M.C., Bartolom, M.L., Anselmo, A.M., Rose, M.F., 2005. Biodegradation of olive oil husks in composting aerated piles. Biosource Technology 96(1):69-78.
  • [32] Georgieva, T.I., Ahring, K., 2007. Potential of agroindustrial waste from olive oil industry for fuel ethanol production. Biotechnology Journal 2(12):1547-1555.
  • [33] Vlyssides, A.G., Loizides, M., Karlis, P.K., 2004. Integrated strategic approach for reusing olive oil extraction by-products. Journal of Cleaner Production 12:603-611.
  • [34] Anonim 2003. Impel olive oil project. http://europa.eu.int/comm/environment/impel. Erişim tarihi: 02/10/2013.
  • [35] Alves-Araujo, C., Pacheco, A., Almeida, M.J., Spencer-Martins, I., Leao, C., Sousa, M.J., 2007. Sugar utilization patterns and respiro-fermentative metabolism in the baker’s yeast Torulaspora delbrueckii. Microbiology 153: 898–904.
  • [36] Visser, W., Scheffers, W.A., Batenburg-van der Vegte, W.H., van Dijken, J.P., 1990. Oxygen requirements of yeasts. Applied and Environmental Microbiology 56(12):3785-3792.
  • [37] Felse, P.A., Panda, T., 2000. Submerged culture production of chitinase by Trichoderma harzianum in stirred tank bioreactors- the influnce of agitator speed. Biochemical Engineering Journal 4(2):115- 120.
  • [38] Nissen, P., Nielsen, D., Arneborg, N., 2003. Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of nonSaccharomyces yeasts in mixed cultures by a cell– cell contact-mediated mechanism. Yeast 20:331- 341.
  • [39] Almeida M.J., Pais C., 1996. Leaving ability and freeze tolerance of yeasts isolated from traditional corn and rye bread doughs. Applied and Environmental Microbiology 62:4401-4404.
  • [40] Muthuvelayudham, R., Viruthagiri, T., 2006. Fermentative production and kinetics of cellulose protein on Trichoderma reesei using sugarcane bagasse and rice straw. African Journal of Biotechnology 5 (20):1873-1881.
  • [41] Belitz, H.D., Grosch, W., Schieberle, P., 2009. Food Chemistry. Berlin, Heidelberg, Springer-Verlag.
  • [42] Combet, E., Henderson, J., Eastwood, D.C., 2006. Eight-carbon volatiles in mushroom and fungi: properties, analysis, and biosynthesis. Mycoscience 47: 317-326.
  • [43] King, A., Dickinson, J.R., 2000. Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluveromyces lactis. Yeast 16:499-506.
  • [44] Plata, C., Millan Mauricio, J.C. 2003. Formation of ethyl acetate and isoamyl acetate by various species of wine yeast. Food Microbiology 20(2):217-224.
  • [45] Sarhy-Bagnon, V., Lozano, P., SaucedoCastaneda, G., Roussos, S., 2000. Production of 6- pentyl-α-pyrone by Trichoderma harzianum in liquid and solid state cultures. Process Biochemistry 36:103-109.
  • [46] Carreon-Serrano, L., Flores, C., Galindo, E., 1997. γ-Decalactone Production by Trichoderma harzianumin Stirred Bioreactors. Biotechnology Progress 13 (2):205-208.
  • [47] Rito-Palomares, M., Negrete, A., Miranda, L., Flores, C., Galindo, E., Serrano-Carreon, L., 2001. The potential application of aqueous two-phase systems for in situ recovery of 6-pentyl- α -pyrone produced by Trichoderma harzianum. Enzyme and Microbial Technology 28(7-8):625-631.
  • [48] Bonnarme, P., Latrasse, A.D., Feron, G., Ginies, C., Durand, A., Le Quere, J.L., 1997. Production of 6- pentyl-α-pyrone by Trichoderma sp. from vegetable oils. Journal of Biotechnology 56:143 –150.
  • [49] Hazelwood, L.L., Daran, J.M., van Maris, A.J.A., Pronk, J.T., Dickinson, J.R., 2008. The Erlich pathway for fusel alcohol production: a centruy of research on Saccharomyces cerevisiae metabolism. Applied and Enviromental Microbiology 74(8):2259-3920.
  • [50] Mason, A.B., Dufour, J.P., 2000. Alcohol acetyltransferaes and the significance of ester synthesis in yeast. Yeast 16:1287-1298.
  • [51] Yilmaztekin, M., Erten, H., Cabaroglu, T., 2009. Enhanced production of isoamyl acetate from beet molasses with addition of fusel oil by Williopsis saturnus var. saturnus. Food Chemistry 112: 290– 294.
  • [52] Wnuk, S., Kinastowski, S., Kaminski, E., 1983. Synthesis and analysis of 1-octen-3-ol, the main flavour component of mushrooms. Nahrung 27: 479-486.
  • [53] Güneşer, O., Karagül-Yüceer, Y., 2010. Gıdalarda aroma maddelerinin belirlenmesinde gaz kromatografisi-olfaktometri (GCO) tekniklerinin kullanılması. Gıda 35(5): 371-378.