Gıda Endüstrisinde Uygulanan Yeni Çözündürme Teknikleri

Çözündürme teknikleri donmuş gıdaların işlenmesinde önemli rol oynamaktadır. Gıda sanayisinde donmuş ürünler geleneksel olarak hava, su veya vakum altında yoğuşan buhar yardımıyla çözülmektedir. Gıdaların geleneksel yöntemler ile çözündürülmesinin bazı olumsuz etkileri bulunmaktadır. Bu olumsuz etkileri ortadan kaldırmaya yönelik yeni çözündürme teknikleri yüksek basınç çözündürme, mikrodalga çözündürme, radyo frekans çözündürme ve ohmik çözündürme uygulamalarıdır. Yüksek basınç çözündürmenin lezzet, renk ve besinsel değerlerde minimum değişiklikler oluşturduğu, çözünme süresini ve damlama kaybını azalttığı belirtilmiştir. Mikrodalga ve radyo frekans çözündürme gıda maddesinde hacimsel ısıtma oluşturmakta, böylelikle çözünme süresi önemli derecede kısalmakta ve sızıntı kaybı azalmaktadır. Ohmik çözündürme teknolojisi ise tekstürel özellikleri iyileştirmekte ve dokuda çok az değişiklik meydana getirmektedir. Gıda sanayinde yeni çözündürme teknikleri çözünme aşamasında gıdalarda aşırı ısınma oluşturmamakta, sızıntı kaybını ve çözünme süresini azaltmakta, besin öğeleri içeriği ile fonsiyonel ve duyusal özelliklerini korumaktadır

Novel Thawing Techniques Applied in Food Industry

Thawing techniques have an important role in processing of frozen foods. Frozen products are generally thawed by means of using air circulation, water or condensing steam under vacuum in the food industry. Thawing foods by conventional techniques may have some disadvantages. Novel thawing techniques such as high pressure thawing, microwave thawing, radio frequency thawing and ohmic thawing are used to eliminate the disadvantages of conventional thawing. It is reported that high pressure thawing causes minimal changes on the flavor, color and nutritional values, and reduces thawing time and drip loss. Microwave and radio frequency thawing generate volumetric heat within the product. These systems significantly reduces thawing time and drip loss. Ohmic thawing technology improves textural properties and causes a very few changes in textures. Since novel thawing techniques applied in food industry do not constitute overheating during thawing foods, and could shorten thawing time. They provide high retention of food nutrients besides functional and sensory properties of foods

___

  • [1] Tülek, Y., Gökalp, H.G., Özkal, S.G., 1999. Gıdaların donma ve çözülme zamanlarının belirlenmesinde kullanılan tahmin metotları I. basit eşitlikler. Pamukkale Üniversitesi Mühendislik Fakültesi Mühendislik Bilimleri Dergisi 5(1): 943- 950.
  • [2] Cemeroğlu, B.S., 2011. Meyve ve Sebze isleme Teknolojisi. 1. Cilt. Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti. Ankara, Türkiye, 79-95.
  • [3] Konak, Ü.İ., Certel, M., Helhel, S., 2009. Gıda sanayisinde mikrodalga uygulamaları. Gıda Teknolojileri Elektronik Dergisi 4(3): 20-31.
  • [4] Zhao, Y., Flores, R.A., Olson, D.G., 1998. High hydrostatic pressure effects on rapid thawing of frozen beef. Journal of Food Science 63(2): 272–5.
  • [5] Bridgman, P.W., 1911. Water in the liquid and five solid forms under pressure. Proceedings of the American Academy of Arts and Sciences 47: 441– 558 . [6] Hite, B.H., 1899. The effect of pressure in the preservation of milk. Bulletin of the West Virginia Agricultural Experiment Station of Morgantown 54: 15–35.
  • [7] Knorr, D., Schlueter, O., Heinz, V., 1998. Impact of high hydrostatic pressure on phase transition of foods. Food Technology 52: 42–45.
  • [8] Karino, S., Hane, H., Makita, T., 1994. Behavior of water and ice at low temperature and high pressure. In High Pressure Bioscience, Edited by Hayashi, R., Kunugi, S., Shimada, S., Suzuki, A., Kyoto: San-Ei Suppan Co. pp. 2-9.
  • [9] Schubring, R., Meyer, C., Schlüter, O., Boguslawski, S., Knorr, D., 2003. Impact of high pressure assisted thawing on the quality of fillets from various fish species. Innovative Food Science and Emerging Technologies 4: 257–267.
  • [10] Zhu, S., Ramaswamy, H., Simpson, B., 2004. Effect of high-pressure versus conventional thawing on color, drip loss and texture of Atlantic salmon frozen by different methods. Lebensm.-Wiss. U.- Technol. 37: 291−299.
  • [11] Mandava, R., Dilber, E., Fernandez, I., 1995. Meat and meat products: use of high pressure treatment. Meat Focus Int. April: 147-151.
  • [12] Tironi, V., LeBail, A., De-Lamballerie, M., 2007. Effects of pressure shift freezing and pressure assisted thawing on sea bass (Dicentrarchus labrax) quality. Journal of Food Science 72(7): 381−387 . [13] Deuchi, T., Hayashi, R., 1992. High pressure treatment at subzero temperature: application to preservation, rapid freezing and rapid thawing of foods. In Balny, C., Hayashi, R., Heremans, K., Masson, P., High pressure and biotechnology. Montrouge, France, Colloque INSERM: Joh Libbey Eurotext Ltd. pp. 353–355.
  • [14] Okamoto, A., Suzuki, A., 2001. Effects of high hydrostatic pressure-thawing on pork meat. Journal of the Japanese Society for Food Science and Technolog 48(12): 891–898.
  • [15] Eshtiaghi, M.N., Knorr, D., 1996. High hydrostatic pressure thawing for the processing of fruit preparations from frozen strawberries. Food Biotechnology 10(2): 143–148.
  • [16] Tironi, V., Lamballerie, M.D., Le-Bail, A., 2010. Quality changes during the frozen storage of sea bass (Dicentrarchus labrax) muscle after pressure shift freezing and pressure assisted thawing. Innovative Food Science and Emerging Technologies 11: 565–573.
  • [17] Yaldagard, M., Mortazavi, S.A., Tabatabaie, F., 2008. The principles of ultra high pressure technology and its application in food processing/preservation: A review of microbiological and quality aspects. African Journal of Biotechnology 7(16): 2739-2767.
  • [18] Rouillé, J., Le Bail, A., Ramaswamy, H.S., Leclerc, L., 2002. High pressure thawing of fish and shellfish. Journal of Food Engineering 53: 83-88.
  • [19] Chevalier, D., Le Bail, A., Chourot, M.J., Chantreau, P., 1999. High pressure thawing of fish (whiting): influence of the process parameters on drip losses. Lebensm.-Wiss. u.-Technol. 32: 25-31.
  • [20] LeBail, A., Chevalier, D., Mussa, D.M., Ghoul, M., 2002. High pressure freezing and thawing of foods: a review. International Journal of Refrigeration 25: 504–513.
  • [21] Schiffman, R.F., 1986. Food product development for microwave processing. Food Technology 40(6): 94-98.
  • [22] Platts, J., 1991. Microwave Ovens. Peter Pergrinus Ltd. London UK.
  • [23] Stephen, J.H., 1997. Microwave Enhanced Chemistry (Fundemantals, sample preparetion and Application). American Chemical Society, Washington DC., USA.
  • [24] İçier, F., Yıldız, H., 2005. Elektriksel yöntemlerim gıdaların kalite özellikleri üzerine etkileri. Gıda Dergisi 30(4): 255-260.
  • [25] Nijhuis, H.H., Torringa, H.M., Muresan, S., Yuksel, D., Leguijt, C., Kloek, W., 1998. Aproaches to improving the quality of dried fruit and vegetable. Trends in Food Science & Technology 9: 13-20.
  • [26] Akkari, E., Chevallier, S., Boillereaux, L., 2005. A 2D non-linear “grey-box” model dedicated to microwave thawing: Theoretical and experimental investigation. Computers & Chemical Engineering 30: 321–328.
  • [27] Lee, M.Z.C., Marchant, T.R., 1999. Microwave thawing of slabs. Applied Mathematical Modelling 23: 363-383.
  • [28] Nykvist, W.E., Decarreau, R.V., 1976. Microwave meat roasting. Journalof Microwave Power 11(1): 3–24.
  • [29] Taher, B.J., Farid, M.M., 2001. Cyclic microwave thawing of frozen meat: experimental and theoretical investigation. Chemical Engineering and Processing: Process Intensification 40: 379–389.
  • [30] Seyhun, N., Ramaswamy, H., Summu, G., Sahin, S., Ahmed, J., 2009. Comparison and modeling of microwave tempering and infrared assisted microwave tempering of frozen potato puree. Journal of Food Engineering 92: 339–344.
  • [31] Holzwarth, M., Korhummel, S., Carle, R., Kammerer, D.R., 2012. Evaluation of the effects of different freezing and thawing methods on color polyphenol and ascorbic acid retention in strawberries (Fragaria × ananassa Duch.). Food Research International 48: 241–248.
  • [32] Baygar, T., Özden, Ö., Üçok, D., 2004. Dondurma ve çözündürme işleminin balık kalitesi üzerine etkisi. Turkish Journal of Veterinary & Animal Sciences 28(1): 173-178.
  • [33] Tuta, S., Palazoğlu, T.K., Gökmen, V., 2010. Effect of microwave pre-thawing of frozen potato strips on acrylamide level and quality of French fries. Journal of Food Engineering 97: 261–266.
  • [34] Richarson(Ed). Woodhesad Publication Limited, CRC Press, Cambridge CH. 10, P 197.
  • [35] Marra, F., Zhang, L., Lyng, J.G., 2009. Radio frequency treatment of foods: Review of recent advances. Journal of Food Engineering 91: 497– 508. [36] Baysal, T., İçier, F., Baysal, A.H., 2011. Güncel ısıtma Yöntemleri. Sidaş medya ltd. Şti, İzmir, Türkiye, s.1-348.
  • [37] Çakmak, H., Tavman, Ş., 2011. Radyo Frekans sistemi ve gıda sanayinde uygulamaları. Gıda Dergisi 36(6): 365-372.
  • [38] Byrne, B., Lyng, J.G., Dunne, G., Bolton, D.J., 2010. Radio frequency heating of comminuted meats - Considerations in relation to microbial challenge studies. Food Control 21: 125–131.
  • [39] Cathcart, W.H., Parker, J.J., 1946. Defrosting frozen foods by high-frequency heat. Journal of Food Science 11: 341–344.
  • [40] Bengtsson, N., 1963. Electronic defrosting of meat and fish at 35 and 2450 MHz a laboratory comparison. Food Technology 17(10): 1309–1312.
  • [41] Jason, A.C., Sanders, H.R., 1962. Dielectric thawing of fish. Food Technology 16(6): 101–112.
  • [42] Sanders, H.R., 1966. Dielectric thawing of meat and meat products. Journal of Food Technology 1: 183– 192.
  • [43] Anonymous M.C., 1992. Thawing frozen poultry. In: Dielectric Heating for Industrial processes. UIE Tour Atlantique, Codex 06, Paris pp. 110-113.
  • [44] Pizza, A., Pedrielli, R., Busetto, M., Bocchi, M., Spinelli, R., 1997. Use of radiofrequencies in the meat processing industry. Effects on the quality characteristics of meat and cooked meat products. Industria Conserve 72: 122–133.
  • [45] Farag, K.W., Lyng, J.G., Morgan, D.J., Cronin, D.A., 2011. A comparison of conventional and radio frequency thawing of beef meats: effects on product temperature distribution. Food Bioprocess Technol. 4: 1128–1136.
  • [46] Farag, K.W., Duggan, E., Morgan, D.J., Cronin, D.A., Lyng, J.G., 2009. A comparison of conventional and radio frequency defrosting of lean beef meats: Effects on water binding characteristics. Meat Science 83: 278–284 . [47] Eroğlu, E., Yıldız, H., 2011. Gıdaların ozmotik kurutulmasında uygulanan yeni tekniklerin enerji verimliliği bakımından değerlendirilmesi. Gıda Teknolojileri Elektronik Dergisi 6(2): 41-48 . [48] Mizrahi, S., Kopelman, I.J., Naveh, D., 1983. Electroconductive thawing by liquid contact. Journal of Food Technology 18: 171–176.
  • [49] Henderson, J.T., 1993. Ohmic thawing of frozen shrimp: preliminary technical and economic feasibility. Master of Science Thesis, University of Florida.
  • [50] Roberts, J., Balaban, O.M., Luzuriaga, D., 1996. Automated ohmic thawing of shrimp blocks. In Proceedings of 19th and 20th Annual Conferences Tropical and Subtropical Seafood Science and Technology Safety of the Americas, pp. 72–81.
  • [51] Luzurıaga, D.A., Balaban, M.O., 1996. Electrical conductivity of frozen shrimp and flounder at different temperatures and voltage levels. Journal of Aquatic Food Product Technology 3(5): 41–63.
  • [52] Yun, C.G., Lee, D.H., Park, J.Y., 1998. Ohmic thawing of frozen meat chunk. Journal of Food Science and Technology (Korean) 30(4): 842–847.
  • [53] Roberts, J.S., Balaban, M.O., Zımmerman, R., Luzurıaga, D., 1998. Design and testing of prototype ohmic thawing unit. Computers and Electronics in Agriculture 19: 211–222.
  • [54] Roberts, J., Balaban, O.M., Luzuriaga, D.A., 2002. Comparison of quality attributes of ohmic and water immersion thawed shrimp. Journal of Aquatic Food Product Technology 11: 3–11.
  • [55] Miao, Y., Kawai, M., Horibe, K., Noguchi, A., 2003. Ohmic thawing of frozen food. Proceedings of the 4 th Annual Meeting of Japan Society for Food Engineering, Otsu-city, Japan, p.30.
  • [56] Miao, Y., Yue chen, J., Noguchi, A., 2007. Studies on the ohmic thawing of frozen surimi. Food Science and Technology Research 13(4): 296-300.
  • [57] İcier, F., Turgay Izzetoglu, G., Bozkurt, H., Ober, A., 2010. Effects of ohmic thawing on histological and textural properties of beef cuts. Journal of Food Engineering 99: 360–365.
  • [58] İcier, F., Bozkurt, H., 2012. Ohmic thawing of frozen beef cuts. Journal of Food Process Engineering 35: 16–36.
  • [59] Hong, G.P., Min, S.G., Ko, S.H., Shim, K.B., Seo, E.J., Choi, M.J., 2007. Effects of brine immersion and electrode contact type low voltage ohmic thawing on the physico-chemical properties of pork meat. Journal of Food Process Engineering 27: 416-423.