Kırmızı ve Yeşil Mercimekten Elde Edilen Diyet Liflerinin Karakterizasyonu ve Fonksiyonel Özellikleri

Bu çalışmada, kırmızı ve yeşil mercimeklerin içerdikleri diyet liflerinin taneden izole edilmesi ve mercimek diyetliflerinin gıda ürünlerinde fonksiyonel bileşen olarak kullanılabilirliğinin belirlenmesi amaçlanmıştır. Mercimekteki diyetliflerini (kabuk diyet lifleri, çözünür olmayan kotiledon diyet lifleri ve çözünür kotiledon diyet liflerini) elde etmek üzereüç farklı yöntem uygulanmıştır. Elde edilen liflerin kompozisyonu ve verimi yanı sıra su tutma kapasitesi, yağ tutmakapasitesi, emülsiyon oluşturma kapasitesi ve şişme kapasitesi gibi fonksiyonel özellikleri araştırılmıştır. Ayrıca, eldeedilen liflerin termal özellikleri de Diferansiyel Taramalı Kalorimetre (DSC) cihazı ile belirlenmiştir. Yeşil mercimekununun %6.83’ü kabuk diyet lifi, %1.78’i çözünür olmayan kotiledon diyet lifi, %8.00’i ise çözünür kotiledon diyet lifiolarak izole edilmiştir. Kırmızı mercimek ununun ise %5.16’sı kabuk diyet lifi, %0.62’si çözünür olmayan kotiledondiyet lifi, %7.08’i çözünür kotiledon diyet lifi olarak izole edilmiştir. Kotiledon unundan çözünür olmayan diyet lifieldesinin kırmızı mercimekte yeşil mercimeğe göre daha düşük verimli olduğu görülmüştür. Yeşil mercimekten eldeedilen liflerde toplam diyet lifi içerikleri; kabuk lifleri, çözünür kotiledon diyet lifleri ve çözünür olmayan kotiledon diyetlifleri için sırasıyla; %23.76, 11.51 ve 72.81 olarak bulunmuştur. Kırmızı mercimek için ise sırasıyla; %20.30, 11.06 ve43.68 olarak elde edilmiştir. Diyet liflerinin fonksiyonel özellikleri incelendiğinde, çözünür olmayan kotiledon diyetliflerinin diğer izole diyet liflerine kıyasla daha yüksek su tutma, yağ tutma ve şişme kapasitesi gösterdiği belirlenmiştir.Emülsiyon oluşturma kapasiteleri mercimek diyet lifleri için genel olarak zayıf bulunmuştur, ancak çözünür kotiledondiyet liflerinin emülsiyon oluşturma kapasitelerinin çözünür olmayan kotiledon diyet lifleri ve kabuk diyet liflerinekıyasla daha yüksek olduğu görülmüştür.

Characterization and Functional Properties of Dietary Fibers Isolated from Red and Green Lentils

In this study, dietary fiber fractions of red and green lentils were isolated, and their potential uses in food products as functional ingredients were determined. During the isolation of dietary fiber fractions, three different methods were used, and three different dietary fiber fractions (hull fiber, insoluble cotyledon fiber and soluble cotyledon fiber) were obtained. Besides the composition and yield of the isolated fibers, their functional properties such as water holding capacity, oil holding capacity, emulsion formation ability and swelling power were also determined. On the other hand, thermal properties of the isolated fibers were determined by the DSC method. From green lentil flour, 6.83% hull fiber, 1.78% insoluble cotyledon fiber and 8.00% soluble cotyledon fiber were obtained while 5.16%, hull fiber, 0.62% insoluble cotyledon fiber and 7.08% soluble cotyledon fiber were isolated from red lentil flour. Yield for cotyledon insoluble fiber from red lentils were lower than the yield of cotyledon insoluble fiber from green lentils. Total dietary fiber contents for the hull fiber, soluble cotyledon fiber and insoluble cotyledon fiber ingredients isolated from green lentils were 23.76, 2.51 and 72.81% whereas for red lentils these values were 20.30, 11.06 and 43.68%, respectively. For the functional properties of dietary fibers, insoluble cotyledon dietary fibers showed higher water holding, fat retention and swelling capacities than other dietary fiber fractions. Emulsion forming capacity was generally weak for lentil fibers. But, the emulsion forming capacity of soluble cotyledon fibers were greater than insoluble cotyledon fiber and hull fiber ingredients.

___

  • [1] Amarowicz, R., Estrella, I., Hernández, T., Robredo, S., Troszyńska, A., Kosińska, A., Pegg, R.B. (2010). Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chemistry, 121(3), 705-711.
  • [2] Derbyshire, E. (2011). The Nutritional Value of Whole Pulses and Pulse Fractions. In: Pulse Foods Processing, Quality and Nutraceutical Applications, Edited by B. Tiwari, A. Gowen, & B. McKenna. Academic Press; San Diego, CA: pp. 363-383.
  • [3] De Almeida Costa, G.E., Da Silva Queiroz-Monici, K., Pissini Machado Reis, S.M., De Oliveira, A.C. (2006). Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chemistry, 94(3), 327-330.
  • [4] Brummer, Y., Kaviani, M.,Tosh, S.M. (2015). Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Research International, 67, 117-125.
  • [5] Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., Attia, H. (2011). Dietary fibre and fibrerich by-products of food processing. Food Chemistry, 124(2), 411-421.
  • [6] Lee, Y.P., Puddey, I.B., Hodgson, J.M. (2008). Protein, fibre and blood pressure: Potential benefit of legumes. Clinical and Experimental Pharmacology and Physiology, 35(4), 473-476.
  • [7] Berrios, J.D.J., Morales, P., Cámara, M., SánchezMata, M.C. (2010). Carbohydrate composition of raw and extruded pulse flours. Food Research International, 43(2), 531-536.
  • [8] Anderson, J.W., Story, L., Sieling, B., Chen, W.J.L. (1984). Hypocholesterolemic effects of high-fibre diets rich in water-soluble plant fibres. Journal of the Canadian Dietetic Association, 47, 140-148.
  • [9] Lattimer, J.M., Haub, M.D. (2010). Effects of dietary fiber and its components on metabolic health. Nutrients, 2(12), 1266-1289.
  • [10] Abdul-Hamid, A., Luan, Y.S. (2000). Functional properties of dietary fibre prepared from defatted rice bran. Food Chemistry, 68(1), 15-19.
  • [11] Khan, A.R., Alam, S., Ali, S., Bibi, S., Khalil dan, I.A. (2007). Dietary Fiber Profile of Food Legumes. Sarhad Journal of Agriculture, 23(3), 763-766.
  • [12] Tosh, S.M., Yada, S. (2010). Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International, 43(2), 450-460.
  • [13] Meuser, F., Pahne, N., Möller M. (1997). Yield of starch and by-products in the processing of different varieties of wrinkled peas on a pilot scale. Cereal Chemistry, 74, 364-370.
  • [14] Otto, T., Baik, B.K., Czuchajowska, Z., 1997. Microstructure of seed, flours, and starches of legumes. Cereal Chemistry, 74, 445-451.
  • [15] Dalgetty, D.D., Baik, B.K. (2003). Isolation and characterization of cotyledon fibers from peas, lentils, and chickpeas. Cereal Chemistry, 80(3), 310-315.
  • [16] Chiou, D., Langrish, T.A.G. (2007). Development and characterisation of novel nutraceuticals with spray drying technology. Journal of Food Engineering, 82(1), 84-91.
  • [17] Sánchez-Mata, M.C.J.P.T.M., Cámara-Hurtado, M., Díez-Marquéz, C., Torija-Isasa, M.E. (1998). Determination of mono-, di-, and oligosaccharides in legumes by high-performance liquid chromatography using an amino-bonded silica column. Journal of Agricultural and Food Chemistry, 46(98), 3648-3652.
  • [18] McConnell, A.A., Eastwood, M.A., Mitchell, W.D. (1974). Physical characteristics of vegetable foodstuffs that could influence bowel function. Journal of the Science of Food and Agriculture, 25, 1457-1461.
  • [19] Chau, C.F., Cheung, P.C.K., Wong, Y.S. (1997). Functional properties of protein concentrates from three Chinese indigenous legume seeds. Journal of Agricultural and Food Chemistry, 45(7), 2500-2503.
  • [20] Betancur-Ancona, D., Peraza-Mercado, G., MoguelOrdoñez, Y., Fuertes-Blanco, S. (2004). Physicochemical characterization of lima bean (Phaseolus lunatus) and Jack bean (Canavalia ensiformis) fibrous residues. Food Chemistry, 84(2), 287-295.
  • [21] Yasumatsu, K., Sawada, K., Moritaka, S., Misaki, M., Toda, J., Wada, T., Ishii, K. (1972). Whipping and emulsifying properties of soybean products. Agricultural and Biological Chemistry, 36(5), 719- 727.
  • [22] Kaur, A., Singh, N., Ezekiel, R., Sodhi, N.S. (2009). Properties of starches separated from potatoes stored under different conditions. Food Chemistry, 114(4), 1396-1404.
  • [23] Carbonaro, M. (2011). Role of Pulses in Nutraceuticals. In: Pulse Foods: Processing, Quality and Nutraceutical Applications. Edited by: B. Tiwari, A. Gowen, & B. McKenna. Academic Press; New York: pp.385-418.
  • [24] Han, I.H., Baik, B.K. (2006). Oligosaccharide content and composition of legumes and their reduction by soaking, cooking, ultrasound and high hydrostatic pressure. Cereal Chemistry, 83, 428- 433.
  • [25] Vaikousi, H., Biliaderis, C.G., Izydorczyk, M.S. (2004). Solution flow behavior and gelling properties of water-soluble barley (1→3,1→4)-βglucans varying in molecular size. Journal of Cereal Science, 39(1), 119-137.
  • [26] Miao, M., Zhang, T. Jiang, B. (2009). Characterisations of kabuli and desi chickpea starches cultivated in China. Food Chemistry, 113, 1025-1032.
  • [27] Lazaridou, A., Biliaderis, C.G., Izydorczyk, M.S. (2003). Molecular size effects on rheological properties of oat beta-glucans in solution and gels. Food Hydrocolloids, 17(5), 693-712.
  • [28] Li, W., Cui, S.W., Kakuda Y. (2006). Extraction, fractionation, structural and physical characterization of wheat β-glucans. Carbohydrate Polymers, 63, 408-416.
  • [29] Zhang, M., Bai, X., Zhang, Z. (2011). Extrusion process improves the functionality of soluble dietary fiber in oat bran. Journal of Cereal Science, 54(1), 98-103.