Probiyotik Bakterilerin Düşük Sıcaklık Stresine Adaptasyonu

Besleyici değeri ve sağlık ile ilgili olumlu özellikleri nedeniyle son yıllarda probiyotik ürünlerin tüketimine ilgi artmaktadır. Probiyotik bir gıdanın tüketimi esnasında en az 106-107 kob/g probiyotik bakteri içermesi gerekmektedir. Ancak pek çok probiyotik ürün bu koşulu sağlayamamaktadır. Probiyotik bir bakterinin endüstriyel prosesler esnasında ve tüketimi sonrası sindirim sisteminde karşılaştığı stres koşullarına (düşük ve yüksek sıcaklık, düşük asitlik, safra tuzu stresi vs.) karşı direnç göstererek canlı kalması gerekmektedir. Probiyotik bakterileri çevresel stres koşullarından koruyabilmek amacı ile çok sayıda yöntem geliştirilmiştir. Bu yöntemlerden biri de probiyotik bakterilerin stres faktörlerine karşı adaptasyonunun sağlanmasıdır. Probiyotik bakterilerin düşük sıcaklık stresine adaptasyonu protein sentezinde ve hücre zarındaki yağ asidi bileşiminde meydana gelen değişim ile gerçekleşmektedir.

Adaptation of Probiotic Bacteria to Low Temperature Stress

In recent years, there has been a growing interest in consuming probiotic products mainly due to the nutritional value and healthy aspects associated with these products. Probiotic food must contain a minimum of 106-107 cfu/g of probiotic bacteria at use-by day. On the other hand many probiotic products fail to meet this standard. Probiotic bacteria should remain alive when exposed to stress conditions (high and low temperature, low acidity, bile stress etc.) during industrial processes and after the consumption in the digestive system. Numerous strategies have been developed to protect probiotic bacteria against environmental stresses. One of them is the adaptation of probiotic bacteria to stress factors. Adaptation of probiotic bacteria to low temperatures takes place with changing protein synthesis, and fatty acid composition of bacteria cell membrane.

___

  • [1] Erişir, D., 2005. Dondurma Üretiminde Probiyotik Bakteri ve Fruktooligosakkarit Kullanımının Ürün Özelliklerine Etkisi Üzerine Bir Araştırma. Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, 74 ss. İzmir.
  • [2] Menrad, K., 2003. Market and marketing of functional food in Europe. Journal of Food Engineering 56(2-3): 181-188.
  • [3] Donkor, O.N., Henriksson, A., Vasilyevic, T., Shah, N.P., 2006. Effect of acidification on the activity of probiotics in yoghurt during cold storage. International Dairy Journal 16: 1181-1189.
  • [4] Şener, A., 2009. Serbest ve Mikroenkapsüle Probiyotik Bakterilerin Ticari Dondurma Üretiminde Kullanılabilirliği Üzerine Bir Araştırma. Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • [5] Sanders, M.E., Marco, M.L. 2010. Food formats for effective delivery of probiotics. Annual Review of Food Science and Technology 1: 65-85.
  • [6] Dikici, A., 2009. Çevresel stres faktörlerine karşı bakteriyel adaptasyonlar ve mekanizmaları. Gıda Teknolojileri Elektronik Dergisi 4 (3): 59-68.
  • [7] Van De Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S., Maguin, E., 2002. Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek 82: 187-216.
  • [8] Corcoran, B.M., Stanton, C., Fitzgerald, G.F., Ross, R.P. 2008. Life under stress: The probiotic stress response and how it may be manipulated. Current Pharmaceutical Design 14: 1382-1399.
  • [9] Yılmaz, B. Ç. 2008. Lactococcus lactis subsp. lactis BLL27 Suşunda Farklı Stres Koşullarının Nisin Üretimi Üzerine Etkisi. Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • [10] Girgis, H.S., Smith, J., Luchansky, J.B., Klaenhammer, T.R. 2003. Stress Adaptations of Lactic Acid Bacteria. In: A. E. Yousef and V. K. Juneja (Editors), Microbial stress adaptation and food safety. CRC Press, 159-211 pp, Boca Raton, Florida.
  • [11] Thieringer, H.A., Jones, P.G., Inouye, M., 1998. Cold shock and adaptation. BioEssays 20: 49-57.
  • [12] Trevors, J.T., Bej, A.K., Mojib, N., Van Elsas, J.D., Van Overbeek, L., 2012. Bacterial gene expression at low temperatures. Extremophiles 16: 167-176.
  • [13] Yamanaka, K., Fang, L., Inouye, M., 1998. The CspA family in Escherichia coli : multiple gene duplication for stress adaptation. Molecular Microbiology 27(2): 247-255.
  • [14] Derzelle, S., Hallet, B., Francis, K.P., Ferain, T., Delcour, J., Hols, P., 2000. Changes in cspL, cspP, and cspC mRNA abundance as a function of cold shock and growth phase in Lactobacillus plantarum. Journal of Bacteriology 182 (18): 5105.
  • [15] Wouters, J.A., Jeynov, B., Rombouts, F.M., De Vos, W.M., Kuipers, O.P., Abee, T., 1999. Analysis of the role of 7 kDa cold-shock proteins of Lactococcus lactis MG1363 in cryoprotection. Microbiology 145: 3185-3194.
  • [16] Kim, W.S., Ren, J., Dunn, N.W. 1999. Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses. FEMS Microbiology Letters 171: 57-65.
  • [17] Wouters, J.A., Jeynov, B., Rombouts, F.M., De Vos, W.M., Kuipers, O.P., Abee, T., 1999. Cold shock proteins and low-temperature response of Streptococcus thermophilus CNRZ302. Applied and Environmental Microbiology 65(10): 4436-4442.
  • [18] De Angelis, M., Gobbetti, M., 2004. Environmental stress responses in Lactobacillus: A review. Proteomics 4: 106-122.
  • [19] Shivaji, S., Prakash, J.S.S., 2010.How do bacteria sense and respond to low temperature? Archives Microbiology 192: 85-95.
  • [20] Beales, N., 2003. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review. Comprehensive Reviews in Food Science and Food Safety 3: 1-20.
  • [21] Murga, M.L.F., Cabrera, G.M., De Valdez, G.F., Disalvo, E.A., Seldes, A.M., 2000. Influence of growth temperature on cryotolerance and lipid composition of Lactobacillus acidophilus. Journal of Applied Microbiology 88: 342-348.
  • [22] Zavaglia, A.G., Disalvo, E.A., De Antoni G.L., 2000. Fatty acid composition and freze-thaw resistance in lactobacilli. Journal of Dairy Research 67: 241-247.
  • [23] Murga, M.L.F., De Valdez, G.F., Disalvo, E.A., 2001. Effect of lipid composition on the stability of cellular membranes during freze-thawing of Lactobacillus acidophilus grown at different temperatures. Archives of Biochemistry and Biophysics 388(2): 179-184.