Glutensiz Bisküvi Unu Formülasyonunun Yanıt Yüzey Yöntemi Kullanılarak Optimizasyonu

Bisküvilik buğday unu bisküvi üretiminde en önemli hammaddedir. Fakat çölyak hastaları glutene karşı gösterdikleriintolerans nedeniyle buğday unundan yapılan bisküvileri tüketmemelidirler. Bu nedenle çalışmada mısır nişastası,mısır unu, pirinç unu ve patates nişastası kullanılarak uygun bir glutensiz bisküvi unu formülasyonu (GBUF)oluşturulması amaçlanmıştır. Bu bileşenlerin kullanım oranları yanıt yüzey metodundan yararlanılarak belirlenmiştir.GBUF deneme deseni oluşturulmadan önce formülasyonda kullanılacak bağımsız değişkenlerin alt ve üst limitmiktarları, mısır unu ve pirinç unu ve mısır nişastası için sırasıyla; %5-20, %0-50 ve %0-30 olarak belirlenmiştir.GBUF’nda oranlar patates nişastası ile yüz birime tamamlanmıştır. Belirlenen bu değerler kullanılarak yanıt yüzeyyöntemi ile Box Behnken metoduna göre GBUF deneme deseni oluşturulmuştur. Bağımlı değişkenler olarak genelkabul edilebilirlik, tekstürel sertlik, renk farkı (delta E) ve yayılma oranı seçilmiştir. Yapılan bu optimizasyonçalışmasından elde edilen verilere göre; %7 mısır nişastası, %8 mısır unu, %40 pirinç unu ve %45 patates nişastasıkarışımı kullanılarak kabul edilebilir kalitede glutensiz bisküvi üretilebileceği sonucuna ulaşılmıştır.

Optimization of Gluten-Free Cookie Flour Formulation by Using Response Surface Methodology

Soft wheat flour is the most important raw material in the production of cookies. But, celiac patients, because of their gluten intolerance, should not consume gluten containing cookies made from wheat flour. Therefore, in this study, it was aimed to form a suitable gluten-free cookie formulation (GFCF) with corn starch, corn flour, rice flour and potato starch. Ratios of these ingredients in formulation were determined by the response surface methodology. Before the construction of the GFCF experimental design, the lower and upper limits of the independent variables to be used in the formulation were determined as 5- 20%, 0-50% and 0-30% for corn flour, rice flour and corn starch, respectively. In the GFCF, the proportions were completed to 100% with potato starch. By using these values, the GFCF experimental design was established by the response surface methodology according to Box Behnken method. General acceptability, textural hardness, color difference (delta E) and spread ratio values were selected as dependent variables. According to the data obtained from this optimization study; a mixture of 7% corn starch, 8% corn flour, 40% rice flour and 45% potato starch was the best to produce gluten-free cookies with acceptable quality.

___

  • [1] Kent, N.L., Eversan, A.D. (1994). Introduction for students of food science and agriculture. Technology of cereals, Elsevier Science, Oxford.
  • [2] Murray, J.A. (1999). The widening spectrum of celiac disease. American Journal of Clinical Nutrition, 69, 354-365.
  • [3] İşleroğlu, H., Dirim, S., Ertekin, F. (2009). Gluten içermeyen, hububat esaslı alternatif ürün formülasyonları ve üretim teknolojileri. Gıda, 34(1), 29-36.
  • [4] Nehra, V., Marietta, E., Murray, J. (2013). Celiac disease. Encyclopedia of Human Nutrition, 298- 306.
  • [5] Rinaldi, M., Paciulli, M., Caligiani, A., Scazzina, F., Chiavaro, E. (2017). Sourdough fermentation and chestnut flour in gluten-free bread: A shelf life evaluation. Food Chemistry, 224(1), 144-152.
  • [6] Shewry, P.R., Tatham, A.S. (2016). Improving wheat to remove coeliac epitopes but retain functionality. Journal of Cereal Science, 67, 12-21.
  • [7] Nylund, L., Kaukinen, K., Lindfors, K. (2016). The microbiota as a component of the celiac disease and non-celiac gluten sensitivity. Clinical Nutrition Experimental, 6, 17-24.
  • [8] Lebwohl, B., Sanders, D.S., Green, P.H.R. (2018). Celiac disease. The Lancet, 391, 70-81.
  • [9] Tursi, A., Brandimarte, G., Giorgetti, G., Gigliobianco, A., Lombardi, D., Gasbarrini, G. (2001). Low prevalence of antigliadin and antiendomysium antibodies in subclinical/silent celiac disease. National Library of Medicine National Institutes of Health, 96, 10.
  • [10] Rampertab, S.D., Pooran, N., Brar, P., Singh, P., Green, P.H. (2006). Trends in the presentation of celiac disease. National Library of Medicine National Institutes of Health, 119, 9-14.
  • [11] Rosell, C.M., Raquel Garzon, R. (2015). Chemical composition of bakery products. Handbook of Food Chemistry, Springer-Verlag, Heidelberg, Berlin.
  • [12] Hayıt, F., Gül, H. (2017). Çölyak ve çölyak hastaları için üretilen ekmeklerin kalite özellikleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7, 163- 169.
  • [13] Renzetti, S., Bello, F.D., Arendt, E.K. (2008). Microstructure, fundamental rheology and baking characteristics of batters and breads from different gluten-free flours treated with a microbial transglutaminase. Journal of Cereal Science, 48, 33-45.
  • [14] Moroni, A.V., Bello, F.D., Arendt, E.K. (2009). Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue? Food Microbiology, 26, 676-684.
  • [15] Mudgil, D., Barak, S., Khatkar, B.S. (2017). Cookie texture, spread ratio and sensory acceptability of cookies as a function of soluble dietary fiber, baking time and different water levels. Food Science and Technology, 80, 537-542.
  • [16] Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965–977.
  • [17] Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandão, G.C., Silva, E.G.P., Portugal, L.A., Reis, P.S., Souza, A.S., dos Santos, W.N.L. (2007). Box-Behnken Design: an Alternative for the Optimization of Analytical Methods, Analytica Chimica Acta, 597, 179–186.
  • [18] Salinas, M.V., Zuleta, A., Ronayne, P., Puppo, M.C. (2012). Wheat Flour Enriched with Calcium and İnulin: A Study of Hydration and Rheological Properties of Dough. Food Bioprocess and Technology, 5, 3129-3141.
  • [19] Anonim, (2001). AACC Method 08,-01, 10-50D, 38- 10, 56-60, 56-81B. Third Edition. American Association of Cereal Chemists, Inc, St. Paul, Minnesota, USA.
  • [20] Gül, H., Yanık, A., Acun, S. (2013). Effects of white cabbage powder on cookie quality. Journal of Food Agriculture and Environment, 11(1), 68-72.
  • [21] Kittisuban, P., Ritthiruangdej, P., Suphantharika, M. (2014). Optimization of hydroxypropylmethylcellulose, yeast β- glucan, and whey protein levels based on physical properties of gluten- free rice bread using response surface methodology. Food Science and Technology, 57, 738-748.
  • [22] Cevik, Ş., Aydın, S., Sermet, O.S., Özkan, G., Karacabey, E. (2017). Optimization of olive oil extraction process by response surface methodology. Akademik Gıda, 15(4), 337-343.
  • [23] Myers, R.H., Montgomery, D.C. (1995). Response surface methodology, process and product optimization using designed experiments. John Wiley and Sons, New York.
  • [24] Nazni, P., Gracia, J. (2014). Application of response surface methodology in the development of barnyard millet bran ıncorporated bread. International Journal of Innovative Research in Science Engineering and Technology, 9(3), 16041- 16048.
  • [25] Sahoo, C., Gupta, A.K. (2012). Optimization of photocatalytic degradation of methyl blue using silver ıon doped titanium dioxide by combination of experimental design and response surface approach. Journal of Hazardous Materials, 215, 302-310.
  • [26] Shamun, S., Haşimoğlu, C., Murcak, A., Andersson, Ö., Tuner, M., Tunestal, P. (2017). Experimental investigation of methanol compression ignition in a high compression ratio engine using a box-behnken design. Fuel, 1, 624- 633.
  • [27] Nam, S.N., Cho, H., Han, J., Her, N., Yoon, J. (2018). Photocatalytic degradation of acesulfame K: optimization using the Box–Behnken design (BBD). Process Safety and Environmental Protection, 113, 10-21.
  • [28] Körbahti, B.K. (2007). Response surface optimization of electrochemical treatment of textile dye wastewater. Journal of Hazardous Materials, 145, 277-286.
  • [29] Körbahti, B.K., Rauf, M.A. (2009). Determination of optimum operating conditions of carmine decoloration by UV/H2O2 using response surface methodology. Journal of Hazardous Materials, 161, 281-286.