Barbunya, Bezelye ve Börülce Kabuklarından Bitkisel Protein Konsantresi Üretimi ve Karakterizasyonu ile Kivi Püresinin Donması ve Dondurularak Kurutulması Üzerine Etkileri

Bu çalışmada, barbunya, bezelye ve börülce kabuklarından izoelektrik noktada çöktürme yöntemi kullanılarak protein konsantreleri elde edilmiştir. Elde edilen protein konsantreleri arasında, börülce kabuğu protein konsantresi en yüksek protein ve en düşük kurumadde içeriğine sahiptir (sırasıyla %41.22 ve 93.52). Barbunya kabuğu protein konsantresinin protein değeri %19.20 ve bezelye kabuğu protein konsantresinin ise %25.48’dir. Börülce kabuğu protein konsantresinin kül değeri en düşük olarak bulunmuştur (%0.005). Renk değerleri dikkate alındığında, en yüksek L* değeri 44.25 olarak barbunya kabuğu protein konsantresi için, en yüksek a* değeri 0.36 olarak barbunya kabuğu protein konsantresi için ve en yüksek b* değeri 0.39 olarak bezelye kabuğu protein konsantresi için ölçülmüştür. En yüksek toplam renk değişim değeri (∆E) 30.23 olarak bezelye kabuğu protein konsantresi için hesaplanmıştır. Fonksiyonel özellikler incelendiğinde ise, barbunya kabuğu protein konsantresi en yüksek su ve yağ tutma kapasitesine (sırasıyla 2.26g/g ve 3.60 g/g), bezelye kabuğu protein konsantresi en yüksek emülsiyon kapasitesi ve stabilitesine (sırasıyla %54.28 ve %51.43) ve köpük oluşturma kapasitesine (%47.63) sahiptir. Börülce kabuğu protein konsantresi en yüksek çözünürlük değerini göstermiştir (%99.23). Diferansiyel taramalı kalorimetri (DSC) analizine göre, börülce kabuğu protein konsantresi en düşük denatürasyon sıcaklığı (Td) ve geçiş ısısı (∆H) değerine sahiptir. Protein konsantrelerinin eklenmesiyle (toplam ağırlığın %0, 1, 2, 4, 6 oranında), %6 oranında protein konsantresi (barbunya, bezelye ve börülce kabuğu protein konsantresi) eklenen kivi pürelerinin donma faz süresi, diğer oranlara göre daha kısa bulunmuştur. Diğer taraftan, kivi püresine protein konsantresi eklemenin dondurarak kurutma davranışı üzerine net bir etkisi gözlenmemiştir.

Production and Characterization of Plant Protein Concentrates from Shells of Kidney Bean, Pea and Cowpea and Their Effects on Freezing and Freeze Drying of Kiwi Puree

In this study, protein concentrates (PCs) were obtained from the shells of kidney bean (KPC), pea (PPC) and cowpea(CPC) by using alkaline extraction followed by isoelectric precipitation and freeze drying. Among PCs, CPC hadsignificantly the highest protein (41.22%) and the lowest dry matter (93.52%) contents. The protein content of KPCwas 19.20% while PPC had a content of 25.48%. The ash content of CPC was the lowest (0.005%). Considering thecolor values of PCs, the highest L* and a* color values were 44.25 and 0.36 for KPC, respectively and the highest b*value was 0.39 for CPC. The highest total color change (∆E) was calculated as 30.23 for PPC. Among functionalproperties, KPC had the highest water (2.26 g/g) and oil holding capacity (3.60 g/g) values. PPC had the highestemulsion capacity (54.28%), stability (51.43%), and foaming capacity (47.63%) values. CPC showed the highestsolubility value (99.23%). Based on the results of differential scanning calorimetry (DSC) analysis, CPC displayed alower denaturation temperature (Td) and heat of transition (∆H). With the addition of the PCs (in 0, 1, 2, 4, and 6% oftotal weight), the duration for the freezing of kiwi puree with a 6% PC (KPC, PPC, and CPC) was the lowest. On theother hand, a clear effect of adding protein to kiwi puree on behavior of freeze drying was not observed.

___

  • [1] Eriksson, M., Strid, I., Hansson, P.A. (2015). Carbon footprint of food waste management options in the waste hierarchy–a Swedish case study. Journal of Cleaner Production, 93, 115-125.
  • [2] Galanakis, C.M. (2012). Recovery of high addedvalue components from food wastes: conventional, emerging technologies and commercialized applications. Trends in Food Science & Technology, 26(2), 68-87.
  • [3] Ladjal-Ettoumi, Y., Boudries, H., Chibane, M., Romero, A. (2016). Pea, chickpea and lentil protein isolates: physicochemical characterization and emulsifying properties. Food Biophysics, 11(1), 43- 51.
  • [4] Ragab, D.M., Babiker, E.E., Eltinay, A.H. (2004). Fractionation, solubility and functional properties of cowpea (Vigna unguiculata) proteins as affected by pH and/or salt concentration. Food Chemistry, 84(2), 207-212.
  • [5] Horax, R., Hettiarachchy, N.S., Chen, P., Jalaluddin, M. (2004). Preparation and characterization of protein isolate from cowpea (Vigna unguiculata L. Walp.). Journal of Food Science, 69(2), 114-118.
  • [6] Bilgi, B., Çelik, S. (2004). Solubility and emulsifying properties of barley protein concentrate. European Food Research and Technology, 218(5), 437-441.
  • [7] Kaur, M., Singh, N. (2007). Characterization of protein isolates from different Indian chickpea (Cicer arietinum L.) cultivars. Food Chemistry, 102(1), 366-374.
  • [8] Shevkani, K., Singh, N., Kaur, A., Rana, J.C. (2015). Structural and functional characterization of kidney bean and field pea protein isolates: a comparative study. Food Hydrocolloids, 43, 679- 689.
  • [9] Wani, I. A., Sogi, D.S., Wani, A.A., Gill, B.S. (2017). Physical and cooking characteristics of some Indian kidney bean (Phaseolus vulgaris L.) cultivars. Journal of the Saudi Society of Agricultural Sciences, 16(1), 7-15.
  • [10] Eşref, I., Halil, Ü. (2007). Moisture-dependent physical properties of white speckled red kidney bean grains. Journal of Food Engineering, 82(2), 209-216.
  • [11] Sathe, S.K. (2002). Dry bean protein functionality. Critical Reviews in Biotechnology, 22(2), 175-223.
  • [12] Tian, S., Kyle, W.S., Small, D.M. (1999). Pilot scale isolation of proteins from field peas (Pisum sativum L.) for use as food ingredients. International Journal of Food Science & Technology, 34(1), 33- 39.
  • [13] Choi, W.S., Han, J.H. (2001). Physical and mechanical properties of pea‐protein‐based edible films. Journal of Food Science, 66(2), 319-322.
  • [14] McKay, K., Schatz, B.G., Endres, G. (2003). Field pea production. NDSU Extension Service.
  • [15] Ehlers, J.D., Hall, A.E. (1997). Cowpea (Vigna unguiculata L. Walp.). Field Crops Research, 53(1- 3), 187-204.
  • [16] Kabas, O., Yilmaz, E., Ozmerzi, A., Akinci, İ. (2007). Some physical and nutritional properties of cowpea seed (Vigna sinensis L.). Journal of Food Engineering, 79(4), 1405-1409.
  • [17] Huang, L.L., Zhang, M., Mujumdar, A.S., Sun, D.F., Tan, G.W., Tang, S. (2009). Studies on decreasing energy consumption for a freeze-drying process of apple slices. Drying Technology, 27(9), 938-946.
  • [18] AOAC. (2005). Official Methods of Analysis of AOAC. (18th ed). (W. Horwitz, Dü.) Gaithersburg, Maryland, USA: Association of Official Analytical Chemists International.
  • [19] AOAC. (2000). Official Methods of Analysis of AOAC. (17th ed). (W. Horwitz, Dü.) Gaithersburg, Maryland, USA: Association of Official Analytical Chemists International.
  • [20] Cano-Chauca, M., Stringheta, P.C., Ramos, A.M., Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420-428.
  • [21] Rodríguez-Ambriz, S.L., Martínez-Ayala, A.L., Millán, F., Davila-Ortiz, G. (2005). Composition and functional properties of Lupinus campestris protein isolates. Plant Foods for Human Nutrition, 60(3), 99-107.
  • [22] Lin, C.S., Zayas, J.F. (1987). Functionality of defatted corn germ proteins in a model system: fat binding capacity and water retention. Journal of Food Science, 52(5), 1308-1311.
  • [23] Wu, Y.V. (2001). Emulsifying activity and emulsion stability of corn gluten meal. Journal of the Science of Food and Agriculture, 81(13), 1223-1227.
  • [24] Sathe, S.K., Salunkhe, D.K. (1981). Functional properties of the great northern bean (Phaseolus vulgaris L.) proteins: emulsion, foaming, viscosity, and gelation properties. Journal of Food Science, 46(1), 71-81.
  • [25] Frota, K.M.G., Mendonça, S., Saldiva, P.H.N., Cruz, R.J., Arêas, J.A.G. (2008). Cholesterol‐lowering properties of whole cowpea seed and its protein isolate in hamsters. Journal of Food Science, 73(9), H235-H240.
  • [26] Turkoglu, T. (2017). Havuç ve patates sebzelerinden ve bunların atıklarından bitkisel protein elde edilmesi ve elde edilen proteinlerin bir örnek gıdaya uygulanması. Ege Üniversitesi Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı. İzmir.
  • [27] Saraç, Ş., Saraç, D., Yüzbaşıoğlu, E. (2006). Üç farklı renk skalasının renk farklılıkları yönünden kolorimetrik olarak incelenmesi. Gazi Üniversitesi Diş Hekimliği Fakültesi Dergisi, 23(2), 85-90.
  • [28] Arntfield, S.D., Murray, E.D. (1981). The influence of processing parameters on food protein functionality I. Differential scanning calorimetry as an indicator of protein denaturation. Canadian Institute of Food Science and Technology Journal, 14(4), 289-294.
  • [29] Ghribi, A.M., Gafsi, I.M., Blecker, C., Danthine, S., Attia, H., Besbes, S. (2015). Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. Journal of Food Engineering, 165, 179-188.
  • [30] Firatligil-Durmus, E., Evranuz, O. (2010). Response surface methodology for protein extraction optimization of red pepper seed (Capsicum frutescens). LWT-Food Science and Technology, 43(2), 226-231.
  • [31] Kinsella, J.E. (1979). Functional properties of soy proteins. Journal of the American Oil Chemists' Society, 56 (3Part1), 242-258.
  • [32] Ahmedna, M., Prinyawiwatkul, W., Rao, R.M. (1999). Solubilized wheat protein isolate: functional properties and potential food applications. Journal of Agricultural and Food Chemistry, 47(4), 1340- 1345.
  • [33] Fernández-Quintela, A., Macarulla, M.T., Del Barrio, A.S., Martínez, J.A. (1997). Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain. Plant Foods for Human Nutrition, 51(4), 331-341.
  • [34] Mune, M.A., Sogi, D.S. (2015). Functional Properties of Protein Concentrates of Cowpea and Bambara Bean Involving Different Drying Techniques. Journal of Food Processing and Preservation, 39(6), 2304-2313.
  • [35] Calıskan, G., Ergun, K., Dirim, S.N. (2015). Freeze drying of kiwi (Actinidia deliciosa) puree and the powder properties. Italian Journal of Food Science, 27(3), 385-396.