Bitkisel Yağlarda Polar Bileşik İçeriğinin Diferansiyel Taramalı Kalorimetre ve Fourier Dönüşümlü Orta-Kızılötesi Spektroskopi ile Belirlenmesi

Bu çalışmada 20 bitkisel yağ örneğindeki toplam polar bileşiklerin TPC belirlenmesi için gaz kromatografisi GC verileri ile birleşik diferansiyel taramalı kalorimetre DSC ve Fourier dönüşümlü orta-kızılötesi spektroskopi FT-MIR verileri kullanılarak literatürde verilen eşitliğin uygulanması olarak iki farklı yaklaşım değerlendirilmiştir. Ayrıca örneklerdeki çoklu doymamış yağ asitleri PUFA içeriğinin tahmin edilmesi için alternatif bir yaklaşım olarak FT-MIR spektroskopisinin kullanılabilirliği test edilmiştir. Toplam polar bileşik miktarının belirlenmesi için referans metot olarak kolon kromatografisi kullanılmıştır. Kristalizasyon entalpisi DSC, PUFA içeriği ise GC ile belirlenmiştir. Kızılötesi spektrum 4000 – 370 cm-1 arasında belirlenmiştir. Spektral veriler ile TPC ve PUFA içeriği verileri arasındaki ilişkiyi tanımlamak için temel bileşenler kullanılarak ileri istatistiksel modeller kalibre ve valide edilmiştir. Elde edilen veriler çalışmada kullanılan bitkisel yağlardaki TPC içeriğinin belirlenmesi için DSC yönteminin yeterince hassas olmadığını göstermiştir. Diğer taraftan FT-MIR yönteminin hem TPC hem de PUFA içeriğinin belirlenmesi için uygun bir metot olduğu bulunmuştur

Determination of Polar Compound Contents of Vegetable Oils by Differential Scanning Calorimetry and Fourier Transformed Mid-Infrared Spectroscopy

This study evaluates two different approaches application of equation given in literature using data from DSC coupled with GC data as well as FT-MIR spectroscopy data to determine total polar compound TPC contents of 20 vegetable oil samples. Moreover, FT-MIR spectroscopy exclusively was tested as an alternative approach for estimating PUFA contents of oil samples. Column chromatography was used as a reference method for determining TPCs. Enthalpy of crystallization was determined with DSC while polyunsaturated fatty acids content with GC. Infrared spectra were registered in the range of 4000 – 370 cm-1. Advanced statistical models using principal components to describe relationship between spectral data and the data on content of TPC and PUFA were calibrated and validated. Results indicated the DSC method to be not accurate enough for the determination of TPCs of oils. On the other hand, FT-MIR method was suitable for the determination of both total polar compounds and polyunsaturated fatty acids contents of vegetable oil samples

___

  • Cuvelier M-E., Lacoste F., Courtois F., 2012. Application of a DSC model for the evaluation of TPC in thermo-oxidized oils. Food Control 28(2): 441-444.
  • Marquez-Ruiz G., Jorge N., Martfn-Polvillo M., Dobarganes M.C., 1996. Rapid, quantitative determination of polar compounds in fats and oils by solid-phase extraction and size-exclusion chromatography using monostearin as internal standard. A Journal of Chromatography 749(1-2): 55-60.
  • Anton Kaufmann A., Ryser B., Suter B., 2001. HPLC with evaporative light scattering detection for the determination of polar compounds in used frying oils. European Food Research and Technology 213(4-5): 372–376.
  • Hein M., Henning H, Isengard H-D., 1998. Determination of total polar parts with new methods for the quality survey of frying fats and oils. Talanta 47(2): 447-454.
  • Xu X-Q., 1999. A Modified VERI-FRY Quick Test for Measuring Total Polar Compounds in Deep- Frying Oils. Journal of American Oils Chemists’ Society 76(9): 1087-1089.
  • Chiavaro, E., Rodriguez-Estrada, M. T., Vittadini, E., & Pellegrini, N., 2010. Microwave heating of different vegetable oils: relation between chemical and thermal parameters. LWT - Food Science and Technology 43(7): 1104-1112.
  • Gloria, H., Aguilera, J.M., 1998. Assessment of the quality of heated oils by differential scanning calorimetry. J. Agric. Food Chem. 46(4): 1363– 1368.
  • Tan C.P., Che Man Y.B., 1999. Quantitative differential scanning calorimetric analysis for determining total polar compounds in heated oils. Journal of the American Oil Chemists’ Society 76(9): 1047-1057.
  • van de Voort F.R., Ismail A.A., Sedman J., Dubois J., Nicodemo T., 1994. The determination of peroxide value by Fourier transform infrared spectroscopy. Journal of American Oils Chemists’ Society 71(9): 921-926.
  • Dubois J., van de Voort F.R., Sedman J., Ismail A. A., Ramaswamy H.R.., 1996. Quantitative Fourier transform infrared analysis for anisidine value and aldehydes in thermally stressed oils. Journal of American Oils Chemists’ Society 73(6): 787-794
  • Hendl O., J.A. Howell J.A., Lowery J., Jones W., 2001. A rapid and simple method for the determination of iodine values using derivative Fourier Analytica Chimica Acta 427(1): 75-81. measurements.
  • Rao Y., Xiang B., Zhou X., Wang Z., Xie S., Xu J. Quantitative and qualitative determination of acid value spectrometry. Journal of Food and Engineering 93(2): 249-252. using near-infrared
  • Reder M., Koczoń P., Wirkowska M., Sujka K., Ciemniewska-Żytkiewicz H. 2014. The application of FT-MIR spectroscopy for the evaluation of energy value, fat content, and fatty acid composition in selected organic oat products. Food Analytical Methods 7(3): 547-554.