Chlorella protothecoides Mikroalg Yağının Karakterizasyonu, Biyoaktif Özellikleri ve Antifungal Etkinliği

Mikroalgler protein, yağ asitleri, karbonhidrat, mineral, pigment, vitaminler, steroller, antioksidanlar ve biyoaktifpolifenoller gibi değerli metabolitler üretilebilen, aktif bileşenler açısından zengin kaynaklardır. Bu değerli metobolitlerisayesinde günümüzde mikroalgler gıda, kozmetik, eczacılık, tarım gibi birçok alanda kullanım potansiyeline sahiptir.Chlorophyta grubuna ait yeşil tek hücreli Chlorella sp. antitümör, antikoagülan, antibakteriyel, antiviral, antifungal veantioksidan aktivite göstermektedir. Mikroalg türlerinden elde edilen mikroalg yağlarının fungal mikroorganizmalarakarşı antimikrobiyal etkiye sahip olduğu ve gıdalarda koruyucu olarak kullanılabileceği düşünülmektedir. Bu çalışmadagıdalarda kalitatif ve kantitatif kayıplara yol açan Penicillium chrysogenum ve Aspergillus parasiticus funguslarınakarşı, kimyasal gıda koruyucularına alternatif olabilecek C. protothecoides mikroalg yağının antifungal etkinliğiincelenmiştir. Penicillium chrysogenum ve Aspergillus parasiticus funguslarına karşı %5 ve %10’lukkonsantrasyonlarda dimetil sülfoksit (DMSO) kullanılarak hazırlanan C. protothecoides mikroalg yağı, disk difüzyonmetodu kullanılarak antifungal etkisi araştırılmıştır. Her iki fungal patojende C. protothecoides mikroalg yağının miselgelişimini azalttığı tespit edilmiştir. C. protothecoides mikroalg yağının antioksidan aktivitesi 1,1-difenil-2-pikril hidrazil(DPPH) serbest radikali giderme metodu kullanılarak tayin edilmiştir. Mikroalg yağının antioksidan etkisi %45.93olarak tespit edilmiştir. C. protothecoides mikroalg yağının, denenen P. chrysogenum ve A. parasitıcus’a karşıantifungal aktiviteye sahip olduğu görülmüştür. Bu sonuçlar doğrultusunda C. protothecoides yağının gıdaendüstrisinde gıda koruyucu olarak kullanılabileceği öngörülmektedir.

Characterization, Bioactive Properties and Antifungal Activity of Chlorella protothecoides Microalgae Oil

Microalgae can produce valuable metabolites such as protein, fatty acids, carbohydrates, minerals, pigments, vitamins, sterols, antioxidants and bioactive polyphenols, which are rich sources of active ingredients. Thanks to these valuable metabolites, microalgae today have the potential to be used in many areas such as food, cosmetics, pharmaceuticals and agriculture. Green single cell Chlorella sp. belonging to the Chlorophyta group shows antitumor, anticoagulant, antibacterial, antiviral, antifungal and antioxidant activity. It is known that microalgae oils have antimicrobial effect against fungal microorganisms and can be used as a preservative in foods. In this study, the antifungal activity of Chlorella protothecoides microalgae oil, an alternative to chemical preservation, against Penicillium chrysogenum and Aspergillus parasiticus fungi, which may cause qualitative and quantitative losses in foods, was determined. The antifungal effect of C. protothecoides microalgae oil prepared by using 5% and 10% concentrations in dimethyl sulfoxide (DMSO) against these fungi was determined by the disc diffusion method. In both fungal pathogens, C. protothecoides microalgae oil decreased micellar growth. The antioxidant activity of the C. protothecoides microalgae oil was determined using the 1,1-diphenyl-2-picryl hydrazyl (DPPH) free radical removal method. Antioxidant effect of microalgae oil was determined as 45.93%. C. protothecoides microalgae oil had an antifungal activity against P. chrysogenum and A. parasiticus. According to the results, it can be concluded that C. protothecoides oil may be used as a food preservative in the food industry.

___

  • [1] Luz, C., Saladino, E., Luciano, F.B., Manes, J., Meca, G. (2017). In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum. LWT- Food Science and Technology, 81, 128-135.
  • [2] Saravanakumar, D., Ciavorella, A., Spadaro, D., Garibaldi, A., Gullino, M.L. (2008). Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biology and Technology, 49, 121-128.
  • [3] Pawlowska, A.M., Zannini, E., Coffey, A., Arendit, E.K. (2012). Green preservatives combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. Advanced in Foods and Nutrition Research, 66, 217-238.
  • [4] Dai, J., Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 7313-7352.
  • [5] Devi, K.P., Suganthy, N., Kesika, P., Pandian, S.K. (2008). Bioprotective properties of seaweeds: in vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complementary and Alternative Medicine, 8(1), 38-49.
  • [6] Akyıl, S., İlter, I., Koç, M., Kaymak-Ertekin, F. (2019). Alglerden elde edilen yüksek değerlikli bileşiklerin biyoaktif/biyolojik uygulama alanları, Akademik Gıda, 52, 166-178.
  • [7] De Morais, M.G., Vaz Bda, S., de Morais, E.G., Costa, J.A. (2015). Biologically active metabolites synthesized by microalgae. Biomed Research International, 1 -15.
  • [8] Danielli, M.M., Dantas, Romero, M.P.B., Costa, Maria, G., Carneiro-da-Cunha, A.O., Galvez, A.R., Drummond, Bezerra, R.S. (2015). Bioproduction, antimicrobial and antioxidant activities of compounds from Chlorella vulgaris. Journal Botany Science, 4, 12-18.
  • [9] Prakash, J.W., Johnson, M., Solomon, J. (2011). Antimicrobial activity of certain fresh water microalgae from Thamirabarani. Asian Pacific Journal of Tropical Biomedicine, 1 (2), 170-173.
  • [10] Radhika, D., Veerabahu, C., Priya, R. (2012). Antibacterial activity of some selected seaweeds from the Gulf of Mannar Coast, South India. Asian Journal of Pharmaceutical and Clinical Research, 5(4), 89-90.
  • [11] Gökpınar, Ş., Koray, T., Akçiçek, E., Göksan, T., Durmaz, Y. (2006). Algal antioksidanlar. E.Ü. Su Ürünleri Dergisi, 23(1), 85-89.
  • [12] Shannon, E., Abu-Ghannam, N. (2016). Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications. Marine Drugs, 14(81) 1-23.
  • [13] Yilmaz, A., Ermis, E., Boyraz, N. (2016). Investigation of in vitro and in vivo anti-fungal activities of different plant essential oils against postharvest apple rot deseases Colletotrichum gleosporioides, Botrytis cinerea and Penicillium expansum. Journal Food Safety and Quality, 67, 113-148.
  • [14] Yilmaz, A., Bozkurt, F., Cicek, P.K., Dertli, E., Durak, Z.M., Yilmaz, M.T. (2016). A novel antifungal surface-coating application to limit postharvest decay on coated apples: molecular, thermal and morphological properties of electrospun zein–nanofiber mats loaded with curcumin. Innovative Food Science and Emerging Technologies, 37, 74-83.
  • [15] Gülyurt, M.Ö., Özçimen, D., Inan, B. (2016). Biodiesel production from Chlorella protothecoides oil by microwave-assisted transesterification. International Journal Molecular Science, 17(4), 579-587.
  • [16] Büyüksırıt, T., Kuleaşan, H. (2014). Fourier dönüşümlü kızılötesi (FTIR) spektroskopisi ve gıda analizlerinde kullanımı. Gıda, 39(4), 235-241.
  • [17] Özçimen, D. (2018). Chlorella protothecoides mikroalg yağının Botrytis cinerea ve Aspergillus niger küflerine karşı antifungal etkisinin incelenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 15(02), 45-52.
  • [18] Vehapi, M., Yilmaz, A., Özçimen, D. (2018). Antifungal activities of Chlorella vulgaris and Chlorella minutissima microalgae cultivated in bold basal medium, wastewater and extract water against Aspergillus niger and Fusarium oxysporum. Romanian Biotechnological Letter, doi: 10.26327/RBL2018.228
  • [19] Vehapi, M., Yilmaz, A., Ozcimen, D. (2018b). Investigation of antibacterial and antioxidant activities of some algae species. Journal of Biotechnology, 280, 80.
  • [20] Brand-Williams, W., Cuvelier, M. Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science and Technology, 28, 25-30.
  • [21] Boutennoun, H., Boussouf, L., Kebieche, M., Al-Qaoud, K., Madani, K. (2017). In vivo analgesic, anti-inflammatory and antioxidant potentials of Achillea odorata from north Algeria. South African Journal of Botany, 112, 307-313.
  • [22] Çalişkan Eleren, S., Öneri B. (2019). Sürdürülebilir ve çevre dostu biyoyakıt hammaddesi: mikroalgler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25 (3), 304-319.
  • [23] Krzemińska, I., Nawrocka, A., Piasecka, A., Jagielski, P., Tys, J. (2015). Cultivation of Chlorella protothecoides in photobioreactors: the combined impact of photoperiod and CO2 concentration. Engineering Life Science, 15, 533-541.
  • [24] Jebsena Christian, Noricib, A., Wagnera, H., Palmuccib, M., Giordanob, M., Wilhelma, C. (2012). FTIR spectra of algal species can be used as physiological fingerprints to assess their actual growth potential. Physiologia Plantarum, 146(4), 427-438.
  • [25] Castillo, F., Hernández, D., Gallegos, G., Rodríguez, R., Aguilar, C.N. (2012). Antifungal properties of bioactive compounds from plants. In Dhanasekaran D (ed) Fungicides for Plant and Animal Diseases. InTech Croatia, 81-106.
  • [26] Thomas, N.V., Kim, S.K. (2013). Beneficial effects of marine algal compounds in cosmeceuticals. Marine Drugs, 11, 146-164.
  • [27] Pérez, M.J., Falqué, E., Domínguez, H. (2016). Antimicrobial action of compounds from marine seaweed. Marine Drugs, 14, 52.
  • [28] Maadane, A., Merghoub, N., Ainane, T., Arroussi, E.H., Benhima, R., Amzazi, S., Bakri, Y., Wahby, I. (2015). Antioxidant activity of some Moroccan marine microalgae: PUFA profiles, carotenoids and phenolic content. Journal Biotechnology, 10(215), 13-9.
  • [29] Li, H.B., Cheng, K.W., Wong, C.C., Fan, K.W., Chen, F., Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry, 102, 771-6.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi