Using Fragility Curves for the Evaluation of Seismic Improvement of Steel Moment Frames

Bu çağlarda binalarin titreşimle iyi Olması için çoklu yollar var. Bu yollardan biri binani yan sertlikinin çok  olmasıdır buna göre perde yada canlandırıcı yeni yapi elemanlari çok yaygındır. Bu çalişmada uç yapida  dört,yedi,ve oniki. Katlarda çelik moment cevcevleri kalaninlmiştir ki her üç plani ortak zemindedir eski  versiyonu  bina  titreşimi  güçlendirilmiş  duzenleme  (UBC  1997code)  tasarlanmıştır  ki  FEMA  356  düzenlemesine göre binalar çok savunmasız dir ve seçilmişdir binanin titreşim gelişmesine göre CFB ve  BRB  ve  perde  bulabilmiştir  sismik  bina  performans  düzeyini  ve  geliştirilmiş  binalari  eğer  ile  kirilgan  olduğunu binalar karşılaşırmış. PGA deprem şiddet indeksi seçilmiştir ve sonunda sismik kırılma ayarlari  uygun yaralanma şiddeti şeçilerek asil bina ve geliştirilmiş bina karşılaştırilmiş ve sonuçları araştırılmıştir.

Using Fragility Curves for the Evaluation of Seismic Improvement of Steel Moment Frames

There  are  numerous  methods  for  buildings'  seismic  improvement,  one  of  which  is  to  increase    the lateral force demand. To do so, adding different types of frames or a shear wall in structures is quite common as a new structural element. The present study selects three steel moment frame structures with four, seven, and twelve stories, all of which have similar floor plans and are designed based on the old seismic design code (UBC 1997 code), which is vulnerable in accordance with FEMA 356 code. For seismic  improvement  Concentrically  Braced  Frame  (CBF),  Buckling  Restrained  Brace  (BRB),  and  shear wall have been used. The seismic performance level of the primary structure and improved structures were  compared  by  means  of  seismic  fragility  curve.  Earthquake  intensity  index  is  "PGA".  Finally,  by selecting an appropriate damage index, fragility curves of the original structure as well as the improved structures  were  presented  and  compared  with  a  normal  log  distribution,  the  results  of  which  was analyzed.

___

  • [1] Mitropoulou, C.C., and Papadrakakis, M., (2011). Developing fragility curves based on neural network IDA predictions. Journal of Engineering Structures, 33, 3409-3421.
  • [2] Khaloo, A., Nozhati, S., Masoomi, H., and Faghihmaleki, H., (2016). Influence of earthquake record truncation on fragility curves of RC frames with different damage indices. Journal of Building Engineering, 7, 23-30.
  • [3] Majd, M., Hosseini, and Amini, M. A., (2012). Developing Fragility Curves for Steel Building with X-Bracing by Nonlinear Time History Analyses. 15th World Conference Earthquake Engineering, Lisboan.
  • [4] Özel, A.E., and Güneyisi, E.M., (2011).  Effects of eccentric steel bracing systems on seismic fragility curves of mid-rise R/C buildings: A case study.   Journal of Structural Safety, 33, 82-95.
  • [5] Jong, S.H., and Elnashai, A.S., (2005). Analytical assessment of an irregular RC frame for full-scale 3D pseudo dynamic testing  - Part I: Analytical model verification. Journal of Earthquake Engineering, 9, 95-128.
  • [6] Liao, W., Loh, C.H., and Tsai, K.C., (2006). Study on the fragility of building structures in Taiwan. Journal of Natural Hazards, 37,55- 69.
  • [7] Pagni, C.A, and Lowes, L.N., (2006). Fragility Functions for Older Reinforced Concrete Beam-Column Joints. Journal of Earthquake Spectra, 22, 215-38.
  • [8] Kappos, A.J., Panagopoulos, G., Panagiotopoulos, C., and Penelis, G., (2006). A hybrid method forth vulnerability assessment of R/C and URM buildings. Journal of Bulletin Earthquake Engineering, 4, 391-413.
  • [9] Jeong, S.H., and Elnashai, A.S., (2007). Probabilistic fragility analysis parameterized by fundamental response quantities. Journal of Engineering Structure, 29, 1238-1251.
  • [10] Lagaros, N.D., (2008). Probabilistic fragility analysis of RC buildings designed with different rules. Journal of Earthquake Engineering and Engineering Vibration, 7, 45-56.
  • [11] Kircil, M.S., and Polat, Z., (2006). Fragility analysis of mid-rise R/C frame buildings. Journal of Engineering Structures, 28, 1335- 1345.
  • [12] FEMA 306., (1998). Evaluation Of Earthquake Damaged Concrete And Masonry Wall Buildings. Federal Emergency Management Agency, Washington, DC.
  • [13] UBC., (1997). Uniform Building Code, International Conference of Building Official,. Whittier, California, USA
  • [14] Fragiadakis, M., Papadrakakis, M., (2008). Modeling analysis and reliability of seismically excited structures: computational issues. International Journal of Computational Methods. 5, 483-511.
  • [15] SeismoSoft, (2012). SeismoStruct - A computer program for static and dynamic nonlinear analysis of framed structures. [16] Seismic Provisions for Steel Structures (ANSI/AISC 341-10), (2010).  
  • [17] FEMA 356., (2006). Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington, D.C.  
  • [18] Abdollahzadeh, G., and Banihashemi., M.R., (2013). Response modification factor of dual moment resistant frame with buckling restrained brace (BRB). Journal of Steel Composite Structure, 14, 621 - 636.
  • [19] Abdollahzadeh, G., and Faghihmaleki, H., (2014). Response modification factor of SMRF improved with EBF and BRBs. Journal of Advanced Research in Dynamical and Control Systems, 6, 42-55.
  • [20] Jamnani, H.H., Abdollahzadeh, G., and Faghihmaleki, H.,  (In Press). Seismic Fragility Analysis of Improved RC Frames Using Different Type of Bracing. Journal of Engineering Science and Technology.
  • [21] Mazzolani, F.M., (2008). Innovative metal systems for seismic upgrading of RCstructures. Journal of Contracture Steel Research, 64, 882-895.
  • [22] D'Aniello, M., Corte G. D., Mazzolani F.M., (2006). Seismic upgrading of RC buildingsby steel eccentric braces: experimental results vs. numerical modeling. In:Proceedings of the 5th international conference on behavior of steel structures in seismic areas.  
  • [23] Seismosignal, (2012). Earthquake Engineering Software Solutions, Version 5.1.0
  • [24] Symth, A., Altay, G., Deodatis, G., Erdik, M., Franco, G., and Gülkan, P., (2004) Probabilistic benefit-cost analysis for earthquake damage mitigation: evaluating measures for apartment houses in Turkey. Journal of Earthquake Spectra, 20,171-203.
  • [25] Faghihmaleki, H., Nejati, F., and Masoumi, H., (In Press). In Vitro Evaluation of Additives Allowed for High Strength Concrete (HSC) and Foam Concrete. Pamukkale University Journal of Engineering Sciences.
  • [26] Abdollahzadeh, G., and Faghihmaleki, H., (2016). Effect of seismic improvement techniques on a structure in seismic- explosive probabilistic two-hazard risk. International Journal of Structural Engineering, 7, 314-331.