Comparison of Some Selection Criteria for Selecting Bivariate Archimedean Copulas

Genellikle,  veriyi  modelleyen  uygun  iki  boyutlu  Arşimedyen  kapula  fonksiyonunu  seçerken  Akaike  Bilgi  Kriteri  (AIC),  Bayesçi  Bilgi  Kriteri  (BIC)  ile  en  küçük  uzaklık  seçim  kriteri  olarak  kullanılır.  Bu  çalışmada,  bu  seçim  kriterlerinin  kapula  seçimindeki  performansları  simulasyon  çalışması ile incelenmiştir.

İki Boyutlu Arşimedyen Kapulalar İçin Bazı Seçim Kriterlerinin Karşılaştırılması

Commonly, while selecting an appropriate bivariate Archimedean copula function that models data,  Akaike  Information  Criterion  (AIC),  Bayesian  Information  Criterion  (BIC),  and  minimum distance  (MD)  are  used  as  a  selection  criterion.  In  this  study,  the  performances  of  these criteria for selecting copula function are investigated by some simulation studies.

___

  • Atkinson, A., 1969. A test for discriminating between models. Biometrika 56, 337-341
  • Atkinson, A., 1970. A method for discriminating between models. Journal of the Royal statistical Society, Series B32, 323-353.
  • Belgorodski, N., 2010. Selecting pair copula families for regular vines with application to the multivariate analysis of European stock market indices. Master Thesis, Technische Universität München.
  • Clayton, D.G., 1978. A Model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence.  Biometrika, 65, 141-151.
  • Cox, D.R., 1962. Further Results on tests of seperate families of hypotheses. Journal of the Royal Statistical Society, Series B24, 406-424.
  • Durrleman, V., Nikeghbali, A., and Roncalli, T., 2000. Which copula is the right one? Technical Report Groupe de Researche operationnelle Credit- Lyonnois.
  • Frank, M.J., 1979. On the simultaneous associativity of F(x,y) and x+y-F(x,y). Aequationes Mathematicae, 19, 194-226.
  • Frees, W.E. and Valdez, A.E., 1997. Understanding relationships using copulas. 32nd. Actuarial Research Conference, 6-8 August at University of Calgary, Albert ,Canada.
  • Genest, C., and Rivest, L.P., 1993. Statistical inference procedures for bivariate archimedean copulas. Journal of the American Statistical Association Theory and Methods ,88, No: 423
  • Genest, C., Rémillard, B. and Beaudoin, D., 2009. goodness-of-fit tests for copulas: A review and apower study. Insurance: Mathematics and Economics, 44,199-213.
  • Grønneberg, S., and Hjort N.L., 2014. The Copula Information Criteria. Scandinavian Journal of Statistics, 41,436-459.
  • Gumbel, E.J., 1960. Bivariate exponential distributions. Journal of the American Statistical Association, 55, 698-707.
  • Huard, D.,Evin, G., and Favre, A.C., 2006. Bayesian copula selection. Computational Statistics&Data Analysis, 51(2), 809-822.
  • Joe, H., 1997. Multivariate Models and Dependence Concepts. Chapman & Hall Ltd. Nelsen, R., 2006. An Introduction to Copulas. Springer, NewYork.
  • R-Development Core Team (2012). R: A Language and Environment for Statistical Computing (computer software). Available from: http://www.R-project.org. Sklar, A., 1959. Fonctions de repartition a n dimensions et leurs marges., Publications del'Institut de Statistique de l'Universite de Paris,8, 229-231.Sklar,
  • A., 1973. Random variables, joint distribution functions and copulas.  Kybernetika, 9,449-460.
  • Schweizer, B., and Sklar, A. 1983. Probabilistic Metric Spaces. North-Holland, New York.
  • Wolfowitz, J., 1957. The minimum distance method. Ann. Math. Statist., 28, 75-87.