Tuz Derişiminin Denizel Kahverengi Alglerin Fotosentetik Performansı Üzerine Etkileri
İntertidal bölgede yaşayan deniz yosunları yüksek ışık, kuruma, radyasyon, yüksek sıcaklık ve tuzlulukgibi çevresel streslere büyük oranda maruz kalmaktadır. Tuzluluk en önemli abiyotik streslerden biridirve birçok açıdan deniz yosunlarının fizyolojisini etkilemektedir. Bu nedenle, bu çalışma tuzluluğun bazıdenizel kahverengi alglerde (Scytosiphon lomentaria ve Ectocarpus siliculosus) fotosentetik performansüzerine etkilerini belirlemek amacıyla yapılmıştır. Örnekler Marmara Denizi’nin güney kıyılarındantoplanmış ve farklı tuz derişimlerinde (23, 33 ve 43 ppt) kültüre alınmıştır. Örneklerin fotosentetikperformansı fotosistem II’nin değişen klorofil floresansının ölçülmesiyle belirlenmiştir. Bu çalışmada,yüksek tuz derişimine maruz kalan örneklerin Fv/Fm oranı, klorofil-a içeriği ve göreceli elektron transferoranı farklı uygulamalar arasında istatistiksel olarak farklılık göstermemiştir. Elde edilen veriler farklı tuzderişimlerine maruz kalan her iki türün, fotosentetik olarak stres altında olmadığını ve tuzlulukdeğişimlerine karşı toleranslı olduklarını göstermektedir.
The Effects of Salinity on Photosynthetic Performance of Brown Seaweeds
Macroalgae living in the intertidal zone are exposed to a wide range of environmental stress, such as high light, desiccation, radiation, high temperature and salinity. Salinity stress is one of the most significant abiotic stresses and affects to vary aspect of macroalgae physiology. Therefore, this study performed to investigate the effect of salinity on photosynthetic performance of some brown seaweeds (Scytosiphon lomentaria ve Ectocarpus siliculosus). The samples were collected from southern region of the Marmara Sea and cultivated in different salinity concentration (23, 33 and 43 ppt). Photosynthetic performances of samples were determined by measuring variable chlorophyll fluorescence of photosystem II. In this sudy, Fv/Fm ratio, chlorophyll-a content and relative electron transport rate of samples exposed to high salinity did not significantly differ among the different treatment. The results indicated that, both species exposed to different salinity are not photosynthetically stressed and they are tolerant to salinity changes.
___
- Baker, N.R., 2008. Chlorophyll fluorescence: A probe of
photosynthesis in vivo. Annual Review of Plant
Biology, 59, 89-113.
- Bradford, M., 1976. A rapid and sensitive method for the
quantitation of microgram quantities of protein
utilizing the principle of protein-dye binding.
Analytical Biochemistry, 72, 248-254.
- Büchel, C. and Wilhelm, C., 1993. In vivo analysis of slow
chlorophyll fluorescence introduction kinetics in
algae: Progress, problems and perspectives.
Photochemistry and Photobiology, 58, 137-148.
- Bunsom, C. and Prathep, A., 2012. Effects of salinity,
light intensity and sediment on growth, pigments,
agar production and reproduction in Gracilaria
tenuistipitata from Songkhla Lagoon in Thailand.
Phycological Research, 60, 169-178.
- Davison, I.R., Pearson, G.A., 1996. Stress tolerance in
intertidal seaweeds. Journal of Phycology, 32,
197-211.
- Dere, Ş., Dalkiran, N., Karacaoğlu, D., Yildiz, G. and Dere,
E., 2003. The determination of total protein, total
soluble carbohydrate and pigment contents of
some macroalgae collected from Gemlik-
Karacaali (Bursa) and Erdek-Ormanlı (Balıkesir) in
the Sea of Marmara, Turkey. Oceanologia, 45(3),
453-471.
- Eggert, A., Nitschke, U., West, J.A., Michalik, D. and
Karsten, U., 2007. Acclimation of the intertidal
red
alga
Bangiopsis
subsimplex
(Stylonematophyceae) to salinity changes.
Journal of Experimental Marine Biology and
Ecology, 343, 176–186.
- Eilers, P.H.C. and Peeters, J.C.H., 1988. A model for the
relationship between light intensity and the rate
of photosynthesis in phytoplankton. Ecological
Modelling, 42, 199-215.
- Gao, K. and Xu, J., 2010. Ecological and physiological
responses of macroalgae to solar and UV
radiation In: ısrael A, Einav R, Seckbach J (eds)
Seaweeds and their role in globally changing
environments. Springer, Dordrecht, p 183-198.
- Gevaert, F., Creach, A., Davoult, D., Migne, A.,
Levavasseur, G., Arzel, P., Holl, A. and Lemoine,
Y., 2003. Laminaria saccharina photosynthesis
measured in situ: photoinhiibition and
xanthophyll cycle during a tidal cycle. Marine
Ecology Progress Series, 247, 43-50.
- Gordillo, F.J.L., Dring, M.J. and Savidge, G., 2002. Nitrate
and phosphate uptake characteristics of three
species of brown algae cultured at low salinity.
Marine Ecology Progress Series, 234, 111-118.
- Hanelt, D., Melchersmann, B., Wiencke, C. and Nultsch,
W., 1997. Effects of high light stress on
photosynthesis of polar macroalgae in relation to
depth distribution. Marine Ecology Progress
Series, 149, 255-266.
- Imchen, T., 2012. Effect of temperature, salinity and
biofilm on the zoospores settlements of
Enteromorpha flexuosa (Wulfen) J. Agardh. Indian
Journal of Geo-Marine Sciences, 41(4), 355-358.
- Inskeep, W.P. and Bloom, P.R., 1985. Extinction
Coefficients of Chlorophyll a and b in N.N-
Dimethylformamide and 80% Acetone. Plant
Physiology, 77, 483-485.
- Kaliaperumal, N., Ezhilvalavan, R. and Ramalingam, J.R.,
2001. Studies on salinity tolerance and
acclimatization of some commercially important
seaweeds. Seaweed Research and Utilization,
23(1-2), 47-53.
- Karsten, U., 2012. Seaweed acclimation to salinity and
desiccation stress. In: Wiencke C., Bischof K. (eds)
Seaweed Biology. Ecological Studies (Analysis and
Synthesis), vol 219. Springer, Berlin, Heidelberg.
87-107pp
- Kirst, G.O., 1990. Salinity tolerance of eukaryotic marine
algae. Annual Review of Plant Physiology and
Plant Molecular Biology, 41, 21–53.
- Lee, T.M. and Liu, C.H., 1999. Correlation of decreased
calcium contents with proline accumulation in
the marine green macroalga Ulva fasciata
exposed to elevated NaCl contents in seawater.
Journal of Experimental Botany, 50, 1855-1862.
- Martins, I., Oliveira, S.M., Flindt, M.R. and Marques, J.C.,
1999. The effect of salinity on the growth rate of
the macroalgae Enteromorpha intestinalis (Chlorophyta) in the Mondego estuary (west
Portugal). Acta Oecologica, 20, 259-265.
- Mohamed, S., Hashim, S.N. and Rahman, H.A., 2012.
Seaweeds: a sustainable function food for
complementary and alternative therapy. Trends
in Food Science Technology, 23, 83-96.
- Özgün, S. and Turan, F., 2015. Biochemical composition
of some brown algae from İskenderun Bay, the
northeastern Mediterranean coast of Turkey.
Journal
of
Black
Sea/Mediterrranean
Environment, 21(2), 125-134.
- Provasoli, L., 1968. Media and prospects for the
cultivation of marine algae: Cultures and
collections of algae. Proceedings of the US-Japan
Conference. Hakone. September 1966. The
Japanese Society of Plant Physiologist, pp: 63-75.
- Sudhir, P. and Murthy, S.D.S., 2004. Effects of salt stress
on basic processes of photosynthesis.
Photosynthetica, 42(4), 481-486.
- Tuğrul, S. and Salihoğlu, İ., 2000. Marmara Denizi ve
Türk Boğazlar Sisteminin Kimyasal Oşinografisi,
Marmara Denizi 2000 Sempozyumu Bildiriler
Kitabı, 11-12 Kasım 2000, İstanbul.
- Xia, J., Li, Y. and Zou, D., 2004. Effect of salinity stress on
PSII Ulva lactuca as probed by chlorophyll
fluorescence measurements. Aquatic Botany, 80,
129-137.
- Yildiz, G. and Dere, Ş., 2008. Effect of salinity stress on
photosynthetic pigments in Ulva rigida
(Chlorophyta). International Journal of Phycology
and Phycochemistry, 4(2), 121-124.
- Yıldız, G. and Tiryaki, Ş., 2017. Kırmızı deniz yosunlarının
fotosentetik performansı üzerine tuzluluğun
etkileri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü
Dergisi, 7(1): 55-61.