Tuz Derişiminin Denizel Kahverengi Alglerin Fotosentetik Performansı Üzerine Etkileri

İntertidal bölgede yaşayan deniz yosunları yüksek ışık, kuruma, radyasyon, yüksek sıcaklık ve tuzlulukgibi çevresel streslere büyük oranda maruz kalmaktadır. Tuzluluk en önemli abiyotik streslerden biridirve birçok açıdan deniz yosunlarının fizyolojisini etkilemektedir. Bu nedenle, bu çalışma tuzluluğun bazıdenizel kahverengi alglerde (Scytosiphon lomentaria ve Ectocarpus siliculosus) fotosentetik performansüzerine etkilerini belirlemek amacıyla yapılmıştır. Örnekler Marmara Denizi’nin güney kıyılarındantoplanmış ve farklı tuz derişimlerinde (23, 33 ve 43 ppt) kültüre alınmıştır. Örneklerin fotosentetikperformansı fotosistem II’nin değişen klorofil floresansının ölçülmesiyle belirlenmiştir. Bu çalışmada,yüksek tuz derişimine maruz kalan örneklerin Fv/Fm oranı, klorofil-a içeriği ve göreceli elektron transferoranı farklı uygulamalar arasında istatistiksel olarak farklılık göstermemiştir. Elde edilen veriler farklı tuzderişimlerine maruz kalan her iki türün, fotosentetik olarak stres altında olmadığını ve tuzlulukdeğişimlerine karşı toleranslı olduklarını göstermektedir.

The Effects of Salinity on Photosynthetic Performance of Brown Seaweeds

Macroalgae living in the intertidal zone are exposed to a wide range of environmental stress, such as high light, desiccation, radiation, high temperature and salinity. Salinity stress is one of the most significant abiotic stresses and affects to vary aspect of macroalgae physiology. Therefore, this study performed to investigate the effect of salinity on photosynthetic performance of some brown seaweeds (Scytosiphon lomentaria ve Ectocarpus siliculosus). The samples were collected from southern region of the Marmara Sea and cultivated in different salinity concentration (23, 33 and 43 ppt). Photosynthetic performances of samples were determined by measuring variable chlorophyll fluorescence of photosystem II. In this sudy, Fv/Fm ratio, chlorophyll-a content and relative electron transport rate of samples exposed to high salinity did not significantly differ among the different treatment. The results indicated that, both species exposed to different salinity are not photosynthetically stressed and they are tolerant to salinity changes.

___

  • Baker, N.R., 2008. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.
  • Bradford, M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  • Büchel, C. and Wilhelm, C., 1993. In vivo analysis of slow chlorophyll fluorescence introduction kinetics in algae: Progress, problems and perspectives. Photochemistry and Photobiology, 58, 137-148.
  • Bunsom, C. and Prathep, A., 2012. Effects of salinity, light intensity and sediment on growth, pigments, agar production and reproduction in Gracilaria tenuistipitata from Songkhla Lagoon in Thailand. Phycological Research, 60, 169-178.
  • Davison, I.R., Pearson, G.A., 1996. Stress tolerance in intertidal seaweeds. Journal of Phycology, 32, 197-211.
  • Dere, Ş., Dalkiran, N., Karacaoğlu, D., Yildiz, G. and Dere, E., 2003. The determination of total protein, total soluble carbohydrate and pigment contents of some macroalgae collected from Gemlik- Karacaali (Bursa) and Erdek-Ormanlı (Balıkesir) in the Sea of Marmara, Turkey. Oceanologia, 45(3), 453-471.
  • Eggert, A., Nitschke, U., West, J.A., Michalik, D. and Karsten, U., 2007. Acclimation of the intertidal red alga Bangiopsis subsimplex (Stylonematophyceae) to salinity changes. Journal of Experimental Marine Biology and Ecology, 343, 176–186.
  • Eilers, P.H.C. and Peeters, J.C.H., 1988. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling, 42, 199-215.
  • Gao, K. and Xu, J., 2010. Ecological and physiological responses of macroalgae to solar and UV radiation In: ısrael A, Einav R, Seckbach J (eds) Seaweeds and their role in globally changing environments. Springer, Dordrecht, p 183-198.
  • Gevaert, F., Creach, A., Davoult, D., Migne, A., Levavasseur, G., Arzel, P., Holl, A. and Lemoine, Y., 2003. Laminaria saccharina photosynthesis measured in situ: photoinhiibition and xanthophyll cycle during a tidal cycle. Marine Ecology Progress Series, 247, 43-50.
  • Gordillo, F.J.L., Dring, M.J. and Savidge, G., 2002. Nitrate and phosphate uptake characteristics of three species of brown algae cultured at low salinity. Marine Ecology Progress Series, 234, 111-118.
  • Hanelt, D., Melchersmann, B., Wiencke, C. and Nultsch, W., 1997. Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Marine Ecology Progress Series, 149, 255-266.
  • Imchen, T., 2012. Effect of temperature, salinity and biofilm on the zoospores settlements of Enteromorpha flexuosa (Wulfen) J. Agardh. Indian Journal of Geo-Marine Sciences, 41(4), 355-358.
  • Inskeep, W.P. and Bloom, P.R., 1985. Extinction Coefficients of Chlorophyll a and b in N.N- Dimethylformamide and 80% Acetone. Plant Physiology, 77, 483-485.
  • Kaliaperumal, N., Ezhilvalavan, R. and Ramalingam, J.R., 2001. Studies on salinity tolerance and acclimatization of some commercially important seaweeds. Seaweed Research and Utilization, 23(1-2), 47-53.
  • Karsten, U., 2012. Seaweed acclimation to salinity and desiccation stress. In: Wiencke C., Bischof K. (eds) Seaweed Biology. Ecological Studies (Analysis and Synthesis), vol 219. Springer, Berlin, Heidelberg. 87-107pp
  • Kirst, G.O., 1990. Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology and Plant Molecular Biology, 41, 21–53.
  • Lee, T.M. and Liu, C.H., 1999. Correlation of decreased calcium contents with proline accumulation in the marine green macroalga Ulva fasciata exposed to elevated NaCl contents in seawater. Journal of Experimental Botany, 50, 1855-1862.
  • Martins, I., Oliveira, S.M., Flindt, M.R. and Marques, J.C., 1999. The effect of salinity on the growth rate of the macroalgae Enteromorpha intestinalis (Chlorophyta) in the Mondego estuary (west Portugal). Acta Oecologica, 20, 259-265.
  • Mohamed, S., Hashim, S.N. and Rahman, H.A., 2012. Seaweeds: a sustainable function food for complementary and alternative therapy. Trends in Food Science Technology, 23, 83-96.
  • Özgün, S. and Turan, F., 2015. Biochemical composition of some brown algae from İskenderun Bay, the northeastern Mediterranean coast of Turkey. Journal of Black Sea/Mediterrranean Environment, 21(2), 125-134.
  • Provasoli, L., 1968. Media and prospects for the cultivation of marine algae: Cultures and collections of algae. Proceedings of the US-Japan Conference. Hakone. September 1966. The Japanese Society of Plant Physiologist, pp: 63-75.
  • Sudhir, P. and Murthy, S.D.S., 2004. Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 42(4), 481-486.
  • Tuğrul, S. and Salihoğlu, İ., 2000. Marmara Denizi ve Türk Boğazlar Sisteminin Kimyasal Oşinografisi, Marmara Denizi 2000 Sempozyumu Bildiriler Kitabı, 11-12 Kasım 2000, İstanbul.
  • Xia, J., Li, Y. and Zou, D., 2004. Effect of salinity stress on PSII Ulva lactuca as probed by chlorophyll fluorescence measurements. Aquatic Botany, 80, 129-137.
  • Yildiz, G. and Dere, Ş., 2008. Effect of salinity stress on photosynthetic pigments in Ulva rigida (Chlorophyta). International Journal of Phycology and Phycochemistry, 4(2), 121-124.
  • Yıldız, G. and Tiryaki, Ş., 2017. Kırmızı deniz yosunlarının fotosentetik performansı üzerine tuzluluğun etkileri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(1): 55-61.