Orta Gerilim Kablolarında Kısmi Boşalma Analizi Üzerine Deneysel Bir Yaklaşım

Elektriksel kısmi boşalmalar, yüksek gerilim arızalarının büyük bir çoğunluğunu oluşturmaktadır. Yalıtkanmalzemelerde hasar meydana getirebilecek kadar güçlü elektrik alanın olduğu her yerde elektrikselkısmi boşalma (deşarj) oluşabilir. Trafolarda, yüksek gerilim kablolarında veya diğer yüksek gerilimelemanlarında meydana gelen kısmi boşalmaların yeri, büyüklüğü ve meydana gelme sıklığı doğru tespitedilemezse zaman içerisinde önemli kalıcı hasarlara sebep olmaktadır. Bu çalışmada, orta gerilimhatlarında yaygın olarak kullanılan XLPE kabloları üzerinde kısmi boşalma ölçüm testlerigerçekleştirilmiştir. XLPE kablolar üzerinde çeşitli küçük hasarlar (defektler) oluşturulmuş ve laboratuvarortamında bu kablolar yüksek gerilim altında test edilmiştir. Defektler, sahada kablo montajişlemlerinde meydana gelebilecek-gelebilen hasarlar ve kabloların üretiminden kaynaklanabilecek içkısmi boşalmalar göz önüne alınarak oluşturulmuştur. Testlerden elde edilen kısmi boşalma sinyallerininistatistiksel özellikleri incelenmiş ve analiz edilmiştir. Sonuç olarak kablo üzerindeki yakın özelliktekifarklı defektlerde kısmi boşalma sinyallerinin farklı özellikler gösterebildiği görülmüştür.

An Experimental Approach to Partial Discharge Analysis in Medium Voltage Cables

Electrical partial discharges constitute a large majority of high voltage faults. Electrical partial discharge may occur wherever there is an electric field strong enough to cause damage to the insulating materials. The location, size and frequency of occurrence of partial discharges that occur in transformers, high voltage cables or other high voltage components cause significant permanent damage over time. In this study, partial discharge measurement tests are carried out on XLPE cables which are widely used in medium voltage lines. Several small defects are brought to the scene on the XLPE cables and these cables are tested under high voltage in the laboratory. Defects are occurred by taking into consideration the internal partial discharges that may arise from the production of cables and damages that may occur in the cable installation process. The statistical propertiesof partial discharge signals obtained from the tests are examined and analyzed. As a result, it is seen that partial discharge signals can show different properties in different (but very similar) defects on the cable.

___

  • Ambikairajah, R., Phung, B. T., Blackburn, T., Ravishankar, J., (2013). Spectral features for the classification of partial discharge signals from selected insulation defect models. IET Science, Measurement & Technology, 7(2):104–111.
  • Arora, R., Abdul Rahman, M.K. ve Srivastava, S.C., (2000). Partial discharge classification using principal component transformation. IEE Proceedings - Science, Measurement and Technology, 147(1):7–13.
  • Van Brunt, R.J., Cernyar, E.W. ve von Glahn, P., (1993). Importance of unraveling memory propagation effects in interpreting data on partial discharge statistics. IEEE Transactions on Electrical Insulation, 28(6):905–916.
  • Chan, J.C., Hui Ma ve Saha, T.K., (2013). Partial discharge pattern recognition using multiscale feature extraction and support vector machine. In 2013 IEEE Power & Energy Society General Meeting. IEEE: 1–5.
  • Chen, X., Qian, Y., Xu, Y.,Sheng, G., Jiang,X., (2016). Energy Estimation of Partial Discharge Pulse Signals Based on Noise Parameters. IEEE Access, 4:10270–10279.
  • Eigner, A. ve Rethmeier, K., (2016). An overview on the current status of partial discharge measurements on AC high voltage cable accessories. IEEE Electrical Insulation Magazine, 32(2):48–55.
  • Evagorou, D., Kyprianou, A.,Georghiou, G.E., Hunter, J.A., Hao, L., Lewin, P.L., Stavrou, A., (2010). Performance of the Support Vector Machine Partial Discharge classification method to noise contamination using phase synchronous measurements. In 2010 Annual Report Conference on Electrical Insulation and Dielectic Phenomena. IEEE: 1–4.
  • Fynes-Clinton, D. ve Nyamupangedengu, C., (2016). Partial discharge characterization of cross-linked polyethylene medium voltage power cable termination defects at very low frequency (0.1 Hz) and power frequency test voltages. IEEE Electrical Insulation Magazine, 32(4):15–23.
  • Hucker, T. ve Krantz, H.-G., (1995). Requirements of automated PD diagnosis systems for fault identification in noisy conditions. IEEE Transactions on Dielectrics and Electrical Insulation, 2(4):544–556.
  • Hunter, J.A., Hao,L., Lewin, P.L., Evagorou, d., Kyprianou, A., Georghiou, G.E., (2010). Comparison of two partial discharge classification methods. In 2010 IEEE International Symposium on Electrical Insulation. IEEE: 1–5.
  • Lalitha, E.M. ve Satish, L., (2000). Wavelet analysis for classification of multi-source PD patterns. IEEE Transactions on Dielectrics and Electrical Insulation, 7(1):40–47.
  • Li, J., Jiang, T., Harrison, R., Grzybowski, S., (2012). Recognition of ultra high frequency partial discharge signals using multi-scale features. IEEE Transactions on Dielectrics and Electrical Insulation, 19(4):1412–1420.
  • Li, P., Zhou, W., Yang, S., Liu,Y., Tian, Y., Wang, Y., (2017). Method for partial discharge localisation in air-insulated substations. IET Science, Measurement & Technology, 11(3):331–338.
  • Luo, L., Han, B., Chen, J., Sheng, G., Jiang, X., (2017). Partial Discharge Detection and Recognition in Random Matrix Theory Paradigm. IEEE Access, 5:8205–8213.
  • Ma, H., Chan, J., Saha, T., Seo, J., Ekanayake, C., (2015). Advanced signal processing techniques for transformer condition assessment. In 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). IEEE: 96–99.
  • Mas’ud, A.A., Stewart, B.G. ve McMeekin, S.G., (2016). An investigative study into the sensitivity of different partial discharge φ-q-n pattern resolution sizes on statistical neural network pattern classification. Measurement, 92:497–507.
  • McDonnell, J.T.E. ve Bentley, P.M., (1994). Wavelet transforms: an introduction. Electronics & Communication Engineering Journal, 6(4):175– 186.
  • Montanari, G.C., (2016). Partial discharge detection in medium voltage and high voltage cables: maximum distance for detection, length of cable, and some answers. IEEE Electrical Insulation Magazine, 32(5):41–46.
  • Sahoo, N.C., Salama, M.M.A. ve Bartnikas, R., (2005). Trends in partial discharge pattern classification: a survey. IEEE Transactions on Dielectrics and Electrical Insulation, 12(2):248–264.
  • Zheng, W., Qian, Y., Yang, N., Huang, C., Jiang, X., (2011). Research on Partial Discharge Localization in XLPE Cable Accessories Using Multi-Sensor Joint Detection Technology. PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review, 87(111):33–2097.
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ