Fay Parametreleri ve Deprem Büyüklüğü Arasındaki İlişkiler İçin Yeni Bir Program: FaultStat

Günümüzde bir bölgenin sismik risk analizlerinin sağlıklı bir şekilde yapılabilmesi için, öncelikle obölgenin sismik deformasyon deseninin hangi yapısal elemanlar tarafından kontrol edildiğinin iyibilinmesi gerekmektedir. Belirlenen yapısal elemanların, kinematik anlamda türleri, geometrileri vesegment yapılarının ortaya çıkartılması ise sismik risk analizlerinin temelini oluşturur. Bu bağlamda,belirlenmiş yapısal elemanların üretebilecekleri maksimum deprem potansiyelleri ile yaratabilecekleriyüzey kırığı uzunluğu ve maksimum yer değiştirme miktarlarının hesaplanabilmesi için, gerekdeterministik gerekse olasılıklar üzerinden belirli yaklaşımlarla bir değerlendirme yapılmaktadır. Buyaklaşımlar ana hatlarıyla (1) jeofiziksel olarak sismik veriler yardımıyla ve/veya jeodezik veriler ışığında(2) tarihsel ve/veya aletsel dönemde meydana gelmiş depremlerin yarattığı yüzey deformasyonlarınınjeolojik gözlemlerine dayanır.Bu çalışma kapsamında, Dünyada meydana gelmiş tarihsel ve aletseldöneme ait depremlerin jeolojik gözlemlerinin sunulduğu 500’ün üzerinde çalışma derlenerek toplamda224 adet depreme ait bir veri seti oluşturulmuş ve değerlendirilmiştir. Bu veriler üzerinde, jeolojikgözlemlerin yapıldığı zaman, ölçüm tekniği ve verinin kendi içinde farklı çalışmalardaki uyumluluğudikkate alınarak belirli bir kalite sınıflaması yapılmıştır. Depremleri üreten faylar kinematik özelliklerinegöre gruplandırılmış ve daha sonra büyüklük (M w )-yüzey kırığı uzunluğu, büyüklük (M w ) -maksimumatım miktarı gibi parametreler hesaba katılarak lineer ya da logaritmik modelleri oluşturularak FaultStatisimli yeni bir bilgisayar programı üretilmiştir. Program hafızasındaki veri setinden hesaplamayapmasının yanında, girilen yeni deprem verilerinden yola çıkarak formüller için yeni katsayılar dahesaplayabilmektedir.

A New Software For Relationships Between Fault Parameters and Earthquake Size: FaultStat

Currently, in order to perform a well seismic risk analysis for a region, firstly it is necessary to know which structural elements have been shaping the seismic deformation pattern in the region. Segmentation of these structures and identification of their geometric and kinematic characteristics also underpin for seismic risk analysis. In this context, in order to calculate maximum earthquake potential, the surface rupture lengths and maximum displacement amounts of these verifying structures, an assessment with specific approaches both deterministic and probabilistic are progressed. These approaches are outlined (1) through the instrument of seismic data in geophysical and/or in the light of geodetic data (2) based on the geological observations of the surface deformations which created by historical and/or instrumental earthquakes. In the scope of this study, over 500 previous studies that presented on the geological observations are compiled and worldwide data set of 224 historical and instrumental earthquakes are composed and interpreted. On this data, a quality ranking classification has been performed in accordance with geological observations date, measurement technique and the compatibility of the data with the different studies. First earthquakes faults are grouped according to their kinematic characteristics, and then a new computer software (FaultStat) has been advanced using parameters such as magnitude-surface rupture length, magnitude-maximum displacement amount are added to the calculations in linear or logarithmic models. Beside, the software calculates from the data set in its memory, it can also calculate new coefficients for the formulas based upon the new earthquake data entered.

___

  • Acharya, H. K., 1979. Regional variations in the rupture- length magnitude relationships and their dynamical significance. Bulletin of the Seismological Society of America,69(6), 2063-2084.
  • Ambraseys, N. N. and Jackson, J. A., 1998. Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophysical Journal International, 133(2), 390-406.
  • Anderson, J. G., Wesnousky, S. G. and Stirling, M. W., 1996. Earthquake size as a function of fault slip rate. Bulletin of the Seismological Society of America, 86(3), 683-690.
  • Arrowsmith, J. R., Crosby, C. J., Korzhenkov, A. M., Mamyrov, E., Povolotskaya, I., Guralnik, B. and Landgraf, A. (2017). Surface rupture of the 1911 Kebin (Chon–Kemin) earthquake, Northern Tien Shan, Kyrgyzstan. Geological Society, London, Special Publications, 432(1), 233-253.
  • Arya, A.K., Pandey, V.K., Gupta, A., Mishra, A. (2016). Seismological Trends in Indian Subcontinent. International Research Journal of Earth Sciences, 4(5), 11-17.
  • Baize, S. and Scotti, O., 2015. The Napa Earthquake, California (M= 6, 24/08/2014). Post-seismic survey report, with special focus on surface faulting. IRSN Technical Report, 28.
  • Barka, A. and Eyidoǧan, H., 1993. The Erzincan earthquake of 13 March 1992 in eastern Turkey. Terra Nova, 5(2), 190-194.
  • Båth, M. (1981). Earthquake magnitude—recent research and current trends. Earth-Science Reviews, 17(4), 315-398.
  • Bent, A. L., 1994. The 1989 (Ms 6.3) Ungava, Quebec, earthquake: A complex intraplate event. Bulletin of the Seismological Society of America, 84(4), 1075- 1088.
  • Bolt, B. (2005). Earthquakes: 2006 centennial update-the 1906 big one. Fifth Edition. 320 p., W. H. Freeman & Company: New York.
  • Bonilla, M. G.,and Buchanan, J. M. (1970). Interim report on worldwide historic surface faulting. U.S. Geological Survey open-file report 1611, 32 p., US Department of the Interior, Geological Survey.
  • Bonilla, M. G., Mark, R. K., and Lienkaemper, J. J., 1984. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement. Bulletin of the Seismological Society of America, 74(6), 2379-2411.
  • Branner, J.C. (1911). Suggested organization for seismologic work on the Pacific Coast Suggestions. Bulletin of the Seismological Society of America, 1(1), 5-8.
  • Cabrera, J. and Sébrier, M., 1998. Surface rupture associated with a 5.3-mb earthquake: The 5 April 1986 Cuzco earthquake and kinematics of the Chincheros-Quoricocha faults of the High Andes, Peru. Bulletin of the Seismological Society of America, 88(1), 242-255.
  • Chen, L., Wang, H., Ran, Y., Sun, X., Su, G., Wang, J., Tan, X., Li, Z. and Zhang, X., 2010. The Ms7. 1 Yushu earthquake surface rupture and large historical earthquakes on the Garzê-Yushu Fault. Chinese Science Bulletin, 55(31), 3504-3509.
  • Chouhan, R. K. S., Gaur, V. K. and Singh, J., 1974. Investigations on the aftershock sequence of the great Assam earthquake of August 15, 1950. Annals of Geophysics, 27(1-2), 245-266.
  • Clark, D., McPherson, A., Allen, T., and De Kool, M., 2013. Coseismic surface deformation caused by the 23 March 2012 M w 5.4 Ernabella (Pukatja) earthquake, central Australia: Implications for fault scaling relations in cratonic settings. Bulletin of the Seismological Society of America, 104(1), 24-39.
  • Coudurier Curveur, A., Kali, E., Tapponnier, P., Karakas, Ç., Ildefonso, S., van der Woerd, J., Baruah S., Choudhury, S., Okal, E. and Banerjee, P., 2016. Surface rupture of the 1950 Assam earthquake: active faults and recurrence interval along the Eastern Himalayan Syntaxis. In EGU General Assembly Conference Abstracts, 18, 15794.
  • Cowan, H. A., 1991. The north Canterbury earthquake of September 1, 1888. Journal of the Royal Society of New Zealand, 21(1), 1-12.
  • Crone, A. J., Machette, M. N., Bonilla, M. G., Lienkaemper, J. J., Pierce, K. L., Scott, W. E. and Bucknam, R. C., 1987. Surface faulting accompanying the Borah Peak earthquake and segmentation of the Lost River fault, central Idaho. Bulletin of the Seismological Society of America, 77(3), 739-770.
  • Cronin, V. S. (2004). A Draft Primer on Focal Mechanism Solutions for Geologists. In “On the Cutting Edge” Workshop on Teaching Structural Geology in the 21st Century. Science Education Resource Center, Carleton College, Northfield, USA.
  • Doğan, B. and Karakaş, A., 2013. Geometry of co-seismic surface ruptures and tectonic meaning of the 23 October 2011 Mw 7.1 Van earthquake (East Anatolian Region, Turkey). Journal of Structural Geology, 46, 99-114.
  • Dryden, J., Addison, J., Eusden, L., Maynwaring, A., Croxall, S., and Gaeth, S. (1926). Ovid’s Metamorphoses: Translated by various authors. Book XV: The Pythagorean philosophy. pp. 377-407, Sir Samuel Garth: London.
  • EMERGEO Working Group, 2010. Evidence for surface rupture associated with the Mw 6.3 L’Aquila earthquake sequence of April 2009 (central Italy). Terra Nova, 22(1), 43-51.
  • Emre, O., Duman, T. Y., Doğan, A., Özalp, S., Tokay, F. and Kuşçu, I., 2003. Surface faulting associated with the Sultandagı earthquake (Mw 6.5) of 3 February 2002, Southwestern Turkey. Seismological Research Letters, 74(4), 382-392.
  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H. and Çan, T., 2016. Active fault database of Turkey. Bulletin of Earthquake Engineering, 1-47, doi: 10.1007/s10518-016-0041-2.
  • Eyidoğan, H. and Jackson, J. (1985). A seismological study of normal faulting in the Demirci, Alaşehir and Gediz earthquakes of 1969–70 in western Turkey: Implications for the nature and geometry of deformation in the continental crust. Geophysical Journal International, 81(3), 569-607.
  • Falcucci, E., Gori, S., Peronace, E., Fubelli, G., Moro, M., Saroli, M., Giaccio, B., Messina, P., Naso, G., Scardia, G., Sposato, A., Voltaggio, M.,Galli, P. and Galadini, F., 2009. The Paganica fault and surface coseismic ruptures caused by the 6 April 2009 earthquake (L'Aquila, central Italy). Seismological Research Letters, 80(6), 940-950.
  • Fletcher, J. M., Teran, O. J., Rockwell, T. K., Oskin, M. E., Hudnut, K. W., Mueller, K. J., Spelz, R.M., Akciz, S.O., Eulalia Masana, E., Faneros, G., Fielding, E.J., Leprince, S., Morelan, A.E., Stock, J., Lynch, D.K., Elliott, A.J., Gold, P., Liu-Zeng, J., González-Ortega, A., Hinojosa-Corona, A. and González-García, J., 2014. Assembly of a large earthquake from a complex fault system: Surface rupture kinematics of the 4 April 2010 El Mayor–Cucapah (Mexico) Mw 7.2 earthquake. Geosphere, 10(4), 797-827.
  • Goto, H., Tsutsumi, H., Toda, S. and Kumahara, Y., 2017. Geomorphic features of surface ruptures associated with the 2016 Kumamoto earthquake in and around the downtown of Kumamoto City, and implications on triggered slip along active faults. Earth, Planets and Space, 69(1), 26.
  • Gruppo di Lavoro, I. N. G. V., 2017. Summary report on the 30 october, 2016 earthquake in central Italy Mw 6.5, Rome, 49.
  • Haeussler, P. J., Schwartz, D. P., Dawson, T. E., Stenner, H. D., Lienkaemper, J. J., Sherrod, B., Cinti, F.R., Montone, P., Craw, P.A., Crone, A.J. and Personius, S. F., 2004. Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 November 2002 M 7.9 earthquake, Alaska. Bulletin of the Seismological Society of America, 94(6B), S23-S52.
  • Haughton, S. (1858). On the Physical Structure of the Old Red Sandstone of the County of Waterford, Considered with Relation to Cleavage, Joint Surfaces, and Faults. Philosophical Transactions, 148, 333-348.
  • Hauksson, E., Stock, J., Hutton, K., Yang, W., Vidal- Villegas, J. A. and Kanamori, H., 2011. The 2010 M w 7.2 El Mayor-Cucapah Earthquake Sequence, Baja California, Mexico and Southernmost California, USA: Active Seismotectonics along the Mexican Pacific Margin. Pure and Applied Geophysics, 168(8-9), 1255-1277.
  • Herece, E., 1990. The fault trace of the 1953 Yenice- Gonen earthquake and the westernmost known extension of the NAF system in the Biga peninsula. Mineral Research and Exploration Bulletin of Turkey, 111, 31-42.
  • Hills, E. S. (1940). Outlines of structural geology. 182 p. Methuen & Co: London.
  • Iida, K. (1959). Earthquake energy and earthquake fault. The Journal of earth sciences, Nagoya University, 7, 98-107.
  • Jackson, J. and McKenzie, D., 1984. Active tectonics of the Alpine–Himalayan belt between western Turkey and Pakistan. GeophysicalJournal International,77(1), 185-264.
  • Kanamori, H. (1983). Magnitude scale and quantification of earthquakes. Tectonophysics, 93(3-4), 185-199.
  • Kanamori, H., 1995. The Kobe (Hyogo-ken Nanbu), Japan, earthquake of January 16, 1995. Seismological Research Letters, 66(2), 6-10.
  • Kaneda, H., Nakata, T., Tsutsumi, H., Kondo, H., Sugito, N., Awata, Y., Akhtar, S.S., Majid, A., Khattak,W.,Awan, A.A, Yeats, R.S., Hussain, A., Ashraf, M.,Wesnousky, S.G. and Kausar, A.B. (2008). Surface rupture of the 2005 Kashmir, Pakistan, earthquake and its active tectonic implications. Bulletin of the Seismological Society of America, 98(2), 521-557.
  • Katsube, A., Hisao Kondo, H., Taniguchi, K. and Kase, F., 2017. Surface rupture and slip associated with the 2014 Nagano-ken Hokubu earthquake (Mw6.2), Jour. Geol. Soc. Japan, Vol. 123(1), 1-21.
  • Kelleher, J., Sykes, L., and Oliver, J. (1973). Possible criteria for predicting earthquake locations and their application to major plate boundaries of the Pacific and the Caribbean. Journal of Geophysical Research, 78(14), 2547-2585.
  • Kline, A. S. (2000). Ovid’s Metamorphoses. A translation into English. 1363 p., Poetry in Translation: Luxembourg.
  • Kulikova, G. and Krüger, F., 2015. Source process of the 1911 M 8.0 Chon-Kemin earthquake: Investigation results by analogue seismic records. Geophysical Journal International, 201(3), 1891-1911.
  • Lee, J. C., Chu, H. T., Angelier, J., Chan, Y. C., Hu, J. C., Lu, C. Y. and Rau, R. J., 2002. Geometry and structure of northern surface ruptures of the 1999 Mw= 7.6 Chi- Chi Taiwan earthquake: influence from inherited fold belt structures. Journal of Structural Geology, 24(1), 173-192.
  • Lettis, W. R., Wells, D. L. and Baldwin, J. N., 1997. Empirical observations regarding reverse earthquakes, blind thrust faults, and quaternary deformation: Are blind thrust faults truly blind?. Bulletin of the Seismological Society of America, 87(5), 1171-1198.
  • Lin, A., Ren, Z., Jia, D. and Wu, X., 2009. Co-seismic thrusting rupture and slip distribution produced by the 2008 Mw 7.9 Wenchuan earthquake, China. Tectonophysics, 471(3-4), 203-215.
  • Livio, F., Michetti, A. M., Vittori, E., Gregory, L., Wedmore, L., Piccardi, L., Tondi E., Roberts G., Blumetti A.M., Bonadeo L., Brunamonte F., Comerci V., Di Manna P., Ferrario M.F., Faure Walker J., Frigerio C., Fumanti F., Guerrieri L., Iezzi F., Leoni G., Mccaffrey K., Mildon Z., Phillips R., Rhodes E., Walters R.J. and Wilkinson M., 2016. Surface faulting during the August 24, 2016, central Italy earthquake (Mw 6.0): preliminary results. Annals of geophysics, 59(Fast Track 5), 1-8
  • Lomnitz, C. and Hashizume, M., 1985. The Popayan, Colombia, earthquake of 31 march 1983. Bulletin of the Seismological Society of America, 75(5), 1315- 1326.
  • Lyell, C. (1868). Principles of Geology or the modern changes of the earth and its inhabitants considered as illustrative of geology (Vol. II). 649 p., John Murray: London.
  • Lyell, C., (1830). Principles of Geology, Being an attempt to explain the former changes of the Earth's surface, by reference to causes now in operation (Vol. 1). 511 p., John Murray: London.
  • McCalpin, J. P. and Thakkar, M. G., 2003. 2001 Bhuj- Kachchh earthquake: Surface faulting and its relation with neotectonics and regional structures, Gujarat, western India. Annals of Geophysics, 46(5), 937-956.
  • McKenzie, D., 1972. Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109-185.
  • Michell, J. (1759). Conjectures concerning the Cause, and Observations upon the Phaenomena of Earthquakes; Particularly of That Great Earthquake of the First of November, 1755, Which Proved So Fatal to the City of Lisbon, and Whose Effects Were Felt As Far As Africa, and More or Less throughout Almost All Europe. Philosophical Transactions, 51, 566-634.
  • Nakata, T., Yomogida, K., Odaka, J. I., Sakamoto, T., Asahi, K. and Chida, N., 1995. Surface fault ruptures associated with the 1995 Hyogoken-Nanbu earthquake. Journal of Geography (Chigaku Zasshi), 104(1), 127-142.
  • Pavlides, S. and Caputo, R., 2004. Magnitude versus faults' surface parameters: quantitative relationships from the Aegean Region. Tectonophysics, 380(3-4), 159-188.
  • Petersen, M. D., Dawson, T. E., Chen, R., Cao, T., Wills, C. J., Schwartz, D. P., & Frankel, A. D. (2011). Fault displacement hazard for strike-slip faults. Bulletin of the Seismological Society of America, 101(2), 805- 825.
  • Pucci, S., De Martini, P. M., Civico, R., Villani, F., Nappi, R., Ricci, T., R. Azzaro, R., Brunori, C.A., Caciagli, M., Cinti, F.R., Sapia, V., De Ritis, R., Mazzarini, F., Tarquini, S., Gaudiosi, G., Nave, R., Alessio, G., Smedile, A., Alfonsi, L., Cucci, L. and Pantosti, D., 2017. Coseismic ruptures of the 24 August 2016, Mw 6.0 Amatrice earthquake (central Italy), Geophysical Research Letters, 44, 2138–2147.
  • Quigley, M., Dissen, R.V., Villamor, P., Litchfield, N., Barrell, D., Furlong K.,, Stahl, T., Duffy, B.,, Bilderback, E., Noble, D., Townsend, D., Begg, J., Jongens, R., Ries, W., Claridge, R., Klahn, A., Mackenzie, H., Smith, A., Hornblow, S., Nicol, R., Cox, S., Langridge, R. and Pedley, K., 2010. Surface rupture of the Greendale fault during the Mw 7.1 Darfield (Canterbury) earthquake, New Zealand: Initial findings. Bulletin of the New Zealand Society for Earthquake Engineering, 43(4), 236-242.
  • Reid, H. F., Davis, W. M., Lawson, A. C., & Ransome, F. L. (1913). Report of the committee on the nomenclature of faults. Bulletin of the Geological Society of America, 24(1), 163-186. Richter, C. F. (1935). An instrumental earthquake magnitude scale. Bulletin of the Seismological Society of America, 25(1), 1-32.
  • Scordilis, E. M. (2006). Empirical global relations converting M S and m b to moment magnitude. Journal of Seismology, 10(2), 225-236.
  • Shirahama, Y., Yoshimi, M., Awata, Y., Maruyama, T., Azuma, T., Miyashita, Y., Mori, H., Imanishi, K., Takeda, N., Ochi, T., Otsubo, M., Asahina, D. and Miyakawa, A., 2016. Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu, Japan. Earth, Planets and Space, 68(1), 191-203.
  • Sözbilir, H., Sümer, Ö., Özkaymak, Ç., Uzel, B., Güler, T. and Eski, S. (2016). Kinematic analysis and palaeoseismology of the Edremit Fault Zone: evidence for past earthquakes in the southern branch of the North Anatolian Fault Zone, Biga Peninsula, NW Turkey. Geodinamica Acta, 28(4), 273-294.
  • Stirling, M.,& Goded, T. (2012). Magnitude scaling relationships. Report Produced for the GEM Faulted Earth & Regionalisation Global Componets, GNS Science Miscellaneous Series, 42, 35.
  • Taber, S. (1923). Some Criteria Used in Recognizing Active Faults. Bulletin of the Geological Society of America, 34, 661-667.
  • Talebian, M., Biggs, J., Bolourchi, M., Copley, A., Ghassemi, A., Ghorashi, M., Hollingsworth, J., Jackson, J., Nissen, E., Oveisi, B., Parsons, B., Priestley, K. and Saiidi, A., 2006. The Dahuiyeh (Zarand) earthquake of 2005 February 22 in central Iran: reactivation of an intramountain reverse fault. Geophysical Journal International, 164(1), 137- 148.
  • Tocher, D. (1958). Earthquake energy and ground breakage. Bulletin of the Seismological Society of America, 48 (2), 147-153.
  • Vakov, A. V., 1996. Relationships between earthquake magnitude, source geometry and slip mechanism. Tectonophysics, 261(1-3), 97-113.
  • Walker, R. T., Bergman, E., Jackson, J., Ghorashi, M. and Talebian, M., 2005. The 2002 June 22 Changureh (Avaj) earthquake in Qazvin province, northwest Iran: epicentral relocation, source parameters, surface deformation and geomorphology. Geophysical Journal International, 160(2), 707-720.
  • Wells, D. L. and Coppersmith, K. J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.
  • Wesnousky, S. G., 2008. Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture. Bulletin of the Seismological Society of America, 98(4), 1609-1632.
  • Willis, B. (1923). A fault map of California. Bulletin of the Seismological Society of America, 13(1), 1-12.
  • Wood, H. O. (1916). The earthquake problem in the western United States. Bulletin of the Seismological Society of America, 6(4), 197-217.
  • Woodcock, N. H. (1987). Kinematics of strike-slip faulting, Builth inlier, Mid-Wales. Journal of Structural Geology, 9(3), 353-363.
  • Youngs, R. R., Arabasz, W. J., Anderson, R. E., Ramelli, A. R., Ake, J. P., Slemmons, D. B., McCalpin, J. P., Doser, D. I., Fridrich, C. J., Swan, F. H., Rogers, M. A., Yount, J. Anderson, L. W., Smith, K. D., Bruhn, R,. L.., Knuepfer, P. K., Smith, R. B., dePolo, M. C., O’Leary, D. W., Coppersmith, K. J. Pezzopane, K. S., Schwartz, P. D., Whitney, W. J., Olig, S. S. & Toro, R. G. (2003). A methodology for probabilistic fault displacement hazard analysis (PFDHA). Earthquake Spectra, 19(1), 191-219.
  • Zhu-jun, H., Litchfield, N., Hong-liu, R., Ren-mao, Y., Peng, G.,Langridge, R.M. and Van Dissen, R.J., 2017. Primarily study on features of surface ruptures induced by the 2016 Mw 7.8 Karkoura earthquake, New Zealand, Seismology and geology, 39(4), 675- 678.