Marmara Bölgesi İçin Kapsamlı SKS Polarizasyon Analizleri ve Üst Manto Deformasyonu Hakkında Düşündürdükleri

Bu çalışmada, telesismik (uzak) depremlere ait dalga formu kayıtları üzerinde gözlenen SKS fazıkullanılarak Marmara Bölgesi’nin altında kalan manto yapısının deformasyonu ile ilişkili anizotropikbulgular incelenmiştir. Bu amaçla kullanılan 34 adet istasyonda, tek-tabakalı anizotropi modelivarsayılarak hesaplanan 572 adet iyi kalitede SKS ayrımlaşması parametresi, hızlı ve yavaş S dalgalarıarasındaki zaman gecikmelerinin 0.97 sn ile 2.17 sn aralığında değiştiğini göstermektedir. İstasyonortalamaları alınarak hesaplanan hızlanma polarizasyonu yönleri K10°D ile K63°D arasında değişerekbüyük çoğunlukla KD-GB yönlü bir dağılıma işaret etmektedir. Hesaplanan istasyon ortalaması alınmışzaman gecikmeleri ve hızlanma yönleri, Anadolu için elde edilen ortalama değerlerle benzer bir dağılımgösterir. Bu ise bize, Marmara Bölgesi altında gözlenen sismik anizotropinin, Helenik Yay’ı boyuncaAnadolu kıtası altına dalım yapan Afrika levhasının geriye çekme etkisi sonucu şekillenen mantokonveksiyon akımları ve buna bağlı gelişen kafes tipi tercihi yönelim (LPO) ile ilişkili olduğunugöstermektedir. Buna ek olarak, SKS ayrışma parametrelerinin yönsel değişimleri üzerine uygulanan iki-tabakalı anizotropik yapı modellemeleri bu sonucu destekler niteliktedir. Bu çalışmadan elde edilenbulgular, Marmara Bölgesi için önceki yıllarda lokal S dalgaları kullanılarak gözlemlenmiş üst-kabuk (8-10km) anizotropisi ile kıyaslandığında, deformasyonun düşey yönde kabuktan litosfer boyunca üstmantoya kadar sürekli bir şekilde iletilmediğini göstermektedir.

Comprehensive SKS Polarization Analyses in the Marmara Region and Implications for the Upper Mantle Deformation

In the present study, deformation pattern within the upper mantle part beneath the Marmara region was investigated using SKS phases observed on the waveform recordings of teleseismic events. 572 good-quality SKS splitting measurements observed at 34 seismic stations, assuming a single-layer anisotropy, resulted in splitting time delays (TD) between fast and slow S-waves ranging from 0.97 s to 2.17 s. Station-averaged fast polarization directions exhibits an overall NE-SW oriented distribution. They vary between N10°E and N63°E. Staion-averaged splitting measurements are in a good accordance with those obtained at various parts of Anatolia as this implies observed seismic anisotropy beneath the Marmara region is likely due to the mantle convection flow and associated lattice preferred orientation (LPO) that have been developed by the roll-back effect of subducting African plate beneath the Anatolia along the Hellenic Trench. Two-layer anisotropy modeling results inferred from directional dependency of apparent SKS splitting parameters tend to support this result. Comparison of the findings from present study with those from local S-wave splitting-derived upper crust (8-10 km) anisotropy results suggest that there is no a vertical coherency in transmitting the deformation from the crust to lithosphere and upper mantle in the study area.

___

  • Armijo, R., N. Pondard, B. Meyer, G. Ucarkus, B. M. de Lepinay, J. Malevieille, S. Dominguez, M.-A. Gustcher, S. Schmidt, C. Beck, N. Cagatay, Z. Cakir, C. Imren, K. Eris, B. Natalin, S. Ozalaybey, L. Tolun, I. Lefevre, L. Seeber, L. Gasperini, C. Rangin, O. Emre, and K. Sarikavak (2005). Submarine fault scarps in the Sea of Marmara pull-apart (North Anatolian fault): Implications for seismic hazard in Istanbul, Geochem. Geophys. Geosyst. 6, no. Q06009, 1–29, doi:10.1029/2004GC000896.
  • Barka, A., 1999. The 17 August Izmit earthquake, Science285, 1858–1859.
  • Becker, T. W., Lebedev, S., and Long, M. D., 2012. On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography. Journal of Geophysical Research, 117, B01306, doi:10.1029/2011JB008705.
  • Bird, P., 1991. Lateral extrusion of lower crust from under high topography, in the isostatic limit: Journal of Geophysical Research, 96, pp. 10275-10286.
  • Bird, P., 2003. An updated digital model of plate boundaries, Geochemistry Geophysics Geosystems(G- cubed), 4, 1027, doi:10.1029/2001GC000252.
  • Biryol, C.B., Zandt, G., Beck, S.L., Özacar, A.A., Adıyaman, H.E., & Gans, R.C., 2010. Shear wave splitting along a nascent plate boundary: The North Anatolian Fault Zone, Geophysical Journal International., 181, 1201– 1213.
  • Bohnhoff, M., Bulut, F., Dresen, G., Malin, P., Eken, T. and Aktar, M., 2013. An earthquake gap south of Istanbul. Nature Communications, 4, 1999.
  • Boness, N.L., & Zoback, M.D., 2006. A multiscale study of the mechanism controlling shear velocity anisotropy in the San Andreas Fault Observatory at depth, Geophysics, 71(5), F131–F146.
  • Cochran, E., Vidale, J., and Li, Y. G., 2003. Near-fault anisotropy following the Hector Mine earthquake, Journal of Geophysical Research, 10, 2436.
  • Confal, J. M., Eken, T., Tilmann, F., Yolsal-Çevikbilen, S., Çubuk-Sabuncu, Y., Saygin, E., & Taymaz, T., 2016. Investigation of mantle kinematics beneath the hellenic-subduction zone with teleseismic direct shear waves, Physics of the Earth and Planetary Interiors, 261, 141–151.
  • Çubuk-Sabuncu, Y., Taymaz T., and Fichtner, A., 2017. 3- D Crustal Velocity Structure of Western Turkey: constraints from full-waveform tomography, Physics of the Earth and Planetary Interiors, 270, 90-112, https://doi.org/10.1016/j.pepi.2017.06.014.
  • Eken, T., Bohnhoff, M., Bulut, F., Can, B., and M. Aktar, 2013. Crustal anisotropy in the Eastern Sea of Marmara region in NW Turkey, Bulletin of the Seismological Society of America (BSSA), 103, 911- 924, doi:10.1785/0120120156.
  • Eken, T. and Tilmann, F., 2014. The Use of Direct Shear Waves in Quantifying Seismic Anisotropy: Exploiting Regional Arrays, Bulletin of the Seismological Society of America (BSSA), 104, 2644–2661, doi:10.1785/0120140020.
  • England, P., & Houseman, G., 1986. Finite strain calculations of continental deformation 2. Comparison with the India–Asia collision zone, Journal of Geophysical Research, 91, 3664–3676.
  • Evangelidis, C., Liang, W.-T., Melis, N., & Konstantinou, K., 2011. Shear wave anisotropy beneath the Aegean inferred from SKS splitting observations, Journal of Geophysical Research, 116, B04314, doi:10.1029/2010JB007884.
  • Fichtner, A., Saygin, E., Taymaz, T., Cupillard, P., Capdeville, Y. and Trampert, J., 2013a. The deep structure of the North Anatolian fault zone, Earth and Planetary Science Letters,373, 109–117.
  • Fichtner, A., Trampert, J., Cupillard, P., Saygin, E., Taymaz, T., Capdeville, Y. and Villaseñor, A., 2013b. Multiscale full waveform inversion. Geophysical Journal International, 194, 534–556.
  • Fouch, M.J., Rondenay, S., 2006. Seismic anisotropy beneath stable continental interiors. Physics of the Earth and Planetary Interiors, 158(2), 292–320.
  • Hurd, O. and Bohnhoff, M., 2012. Stress and structural- induced shear-wave anisotropy along the 1999 Izmit Rupture, Northwest Turkey, Bulletin of the Seismological Society of America (BSSA), 102(5), 2177–2188, doi: 10.1785/0120110270.
  • Katayama, I., Jung, H., & Karato S-I., 2004. New type of olivine fabric from deformation experiments at modest water content and low stress, Geology, 32(12), 1045-1048, doi:10.1130/G20805.1.
  • Kennett, B. and Engdahl, E.R., 1991. Travel times for global earthquake location and phase identification, Geophysical Journal International, 105, 429–465.
  • Kind, R., Eken, T., Tilmann, F., Sodoudi, F., Taymaz, T., Bulut, F., Xuan, X., Can, B. and Schneider, F., 2015. Thickness of the lithosphere beneath Turkey and surroundings from S-receiver functions, Solid Earth, 6, 971-984.
  • Lassak, T.M., Fouch, M.J., Hall C.E., & Kaminski, E., 2006. Seismic characterization of mantle flow in subduction systems: Can we resolve a hydrated mantle wedge? Earth and Planetary Science Letters, 243, 632–649.
  • Liccardi, A., Eken, T., Agostnetti, N.P., Yolsal-Çevikbilen, S., Tilmann, F., and Taymaz, T., in press. Seismic anisotropy in central North Anatolian Fault Zone and its implications on crustal deformation, Physics of the Earth and Planetary Interiors, 277, 99-112, doi.org/10.1016/j.pepi.2018.01.012.
  • Long, M. D. & Becker, T.W., 2010. Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297, Frontiers, 341-354.
  • Paul, A., Karabulut, H., Mutlu, A. K., & Salaün, G., 2014. A comprehensive and densely sampled map of shear- wave azimuthal anisotropy in the Aegean–Anatolia region.Earth and Planetary Science Letters, 389, 14– 22.
  • Peng, Z. and Ben-Zion, Y., 2004. Systematic analysis of crustal anisotropy along the Karadere-Duzce branch of the North Anatolian fault, Geophysical Journal International, 159, 253–272.
  • Royden, L.H., Birchfiel, B.C., King, R.W., Wang, E., Chen, Z., Shen F., & Liu Y., 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276, 788–790.
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., et al., 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, Journal of Geophysical Research, 111, B05411, doi:10.1029/2005JB004051.
  • Sandvol, E., Turkelli, N., Zor, E., Gok, R., Bekler, T., Gurbuz, C., Seber, D., & Barazangi, M., 2003. Shear wave splitting in a young continent-continent collision: An example from eastern Turkey, Geophysical Research Letters, 30, 8041, doi:10.1029/2003GL017390, 24.
  • Silver, P.G., & Chan, W.W, 1991. Shear wave splitting and sub-continental mantle deformation, Journal of Geophysical Research, 96(B10), 16429–16454.
  • Silver, P.G., Savage, M.K., 1994. The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers. Geophysical Journal International, 119(3), 949–963.
  • Tadokoro, K., Ando, M., Baris, S., Nishigami, K., Nakamura, M., Ucer, S. B., Ito, A., Honkura, Y. and Isikara, A. M., 2002. Monitoring of fault healing after the 1999 Kocaeli, Turkey, earthquake, Journal of Seismology,6, 411–417.
  • Taymaz, T., Kasahara, J., Hirn, A. & Sato, T., 2001. Investigations of micro-earthquake activity within the Sea of Marmara and surrounding regions by using ocean bottom seismometers (OBS) and land seismographs: initial results, Scientific Activities 2001 Symposia -Extended Abstracts Book, pp. 42-51. Istanbul Technical University, Faculty of Mines, May 8, 2001, ATLAS DBR-Offset Printing House, Istanbul- Turkey, 113 pages, ISBN 975-97518-0-1.
  • Yolsal-Çevikbilen, S., 2014. Seismic anisotropy along the Cyprean arc and northeast Mediterranean Sea inferred from shear wave splitting analysis. Physics of the Earth and Planetary Interiors,233, 112–134.
  • Weiss, T., Siegesmund, S., Rabbel, W., & Bohlen, T., and Pohl, M., 1999. Seismic velocities and anisotropy of the lower continental crust: A review, Pure and Applied Geophysics, 156, 97–122.
  • http://www.koeri.boun.edu.tr/sismo/2/deprem- verileri/sayisal-veriler (03.05.2017)
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ