Lantan Oksit Takviyesinin Steatit-Kordiyerit SeramiklerininFiziksel, Mikroyapısal ve Mekaniksel Özellikleri Üzerindeki Etkisi

Bu çalışmada, lantanyum oksit (La 2 O 3 ) takviyeli steatit-ağırlıkça % 20 kordiyerit seramikler (SC20),yüksek enerjili öğütme, soğuk presleme ve sinterlemeden oluşan birleşik bir metot ile üretilmiştir. Farklımiktarlardaki La 2 O 3 takviyesi (ağırlıkça % 0.5, 1, 2, 5 ve 10), proses parametresi olarak kullanılmıştır.Preslenmiş kompakt numuneler, 1250 ve 1300C’de oksit ortamda sinterlenmiştir. Sinterlenmişnumunelerin faz karakterizasyonları ve mikroyapısal özellikleri X-ışınları difraktometresi (XRD), lazerpartikül boyut analiz cihazı ve taramalı elektron mikroskobu (SEM) kullanılarak gerçekleştirilmiştir.Sinterlenmiş numunelerin yoğunluk, açık gözeneklilik ve su emme değerleri Arşimet ve suda kaynatmametotlarından yararlanılarak ölçülmüştür. Mikrosertlik ölçümleri ve basma dayanımı testleri deyapılmıştır. Sonuçlara göre, en yüksek rölatif yoğunluk ( % 99.38) ve en düşük gözeneklilik/su emmedeğerleri, ağırlıkça % 10 La 2 O 3 ile takviye edilmiş 1250C’de sinterlenmiş, ve ağırlıkça % 5 La 2 O 3 iletakviye edilmiş 1300C’de sinterlenmiş SC20 numunelerinde elde edilmiştir. Ayrıca, en yüksek sertlik( 1170 HV) ve basma dayanımı değerleri ( 895 MPa), ağırlıkça % 2 La 2 O 3 ile takviye edilmiş 1300C’desinterlenmiş SC20 numunesi için bulunmuştur.

Effect of Lanthanum Oxide Reinforcement on the Physical, Microstructural and Mechanical Properties of Steatite-Cordierite Ceramics

In this study, lanthanum oxide (La 2 O 3 ) reinforced steatite-20 wt.% cordierite ceramics (SC20) were fabricated by using a combined method of high-energy ball milling, cold pressing and sintering. Different amounts of La 2 O 3 reinforcement (0.5, 1, 2, 5 and 10 wt.%) were used as process parameter. The green compacts were sintered at 1250C and 1300C for 2 h under air. Phase characterizations and microstructural properties of the sintered materials were carried out by using X-ray diffractometer (XRD), laser particle size analyzer and scanning electron microscope (SEM). Density, open porosity and water absorption values of the sintered bodies were measured by Archimedes method and boiling method of impregnation. Microhardness measurements and compressive strength tests were also conducted. According to the results, the highest relative density ( 99.38 %) and the lowest porosity/water absorption values were obtained for the 10 wt.% La 2 O 3 reinforced SC20 sample sintered at 1250C and 5 wt.% La 2 O 3 reinforced SC20 sample sintered at 1300C. Also, 2 wt.% La 2 O 3 reinforced SC20 sample sintered at 1300C had the highest hardness ( 1170 HV) and compressive strength (895 MPa) values.

___

  • Camerucci, M.A., Urretavizcaya, G. and Cavaliari, A.L., 2001. Mechanical behaviour of cordierite and cordierite-mullite materials evaluated by indentasyon techniques. Journal of the European Ceramic Society, 21, 1195-1204.
  • Camerucci, M.A., Urretavizcaya, G. and Cavalieri, A.L., 2003. Sintering of cordierite based materials. Ceramics International, 29, 159-168.
  • Cao, J., Ji, H., Liu, J., Zheng, M., Chang, X., Ma, X., Zhang, A. and Xu, Q., 2005. Controllable syntheses of hexagonal and lamellar mesostructured lanthanum oxide. Materials Letters, 59, 408-411.
  • Costa Oliveira, F.A. and Cruz Fernandes, J., 2002. Mechanical and thermal behaviour of cordierite- zirconia composites. Ceramics International, 28, 79- 91.
  • German, R.M., 1985. Liquid Phase Sintering. Springer US, 43-64.
  • Goren, R., Ozgur, C. and Gocmez, H., 2006. The preparation of cordierite from talc, fly ash, fused silica and alumina mixtures. Ceramics International, 32, 53-56.
  • Gökçe, H., 2002. Doğal hammaddelerin sentetik kordiyerit seramiklerinin geliştirilmesi ve karakterizasyonu. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 24-41.
  • Gökçe, H., Ağaoğulları, D., Öveçoğlu, M.L., Duman, İ. and Boyraz, T., 2011. Characterization of microstructural and thermal properties of steatite/cordierite ceramics prepared by using natural raw materials. Journal of the European Ceramic Society, 31, 2741- 2747.
  • Gökçe, H., Öveçoğlu, M.L, Aslanoğlu, Z. and Özkal, B., 2004. Microstructural characterization of cordierite ceramics produced from natural raw materials and synthetic powders. Key Engineering Materials, 264- 268, 1035-1038.
  • Kale, S.S., Jadhav, K.R., Patil, P.S., Gujar, T.P. and Lokhande, C.D., 2005. Characterizations of spray- deposited lanthanum oxide (La 2 O 3 ) thin films. Materials Letters, 59, 3007-3009.
  • Kingery, W.D., Bowen, H.K. and Uhlmann D.R., 1976. Introduction to Ceramics, Wiley, New York, 80-110.
  • Kobayashi, Y., Sumi, K. and Kato, E., 2000. Preparation of dense cordierite ceramics from magnesium compounds and kaolinite without additives. Ceramics International, 26, 739-743.
  • Manoilova, O.V., Podkolzin, S.G., Tope, B., Lercher, J., Stangland, E.E., Guopil, J.M. and Weckhuysen, B.M., 2004. Surface acidity and basicity of La 2 O 3 , LaOCl, and LaCl 3 characterized by IR spectroscopy, TPD, and DFT calculations. The Journal of Physical Chemistry B, 108, 15770-15781.
  • Mielcarek, W., Nowak-Woźny, D. and Prociów, K., 2004. Correlation between MgSiO 3 phases and mechanical durability of steatite ceramics. Journal of the European Ceramic Society, 24, 3817-3821.
  • Reynard, B., Bass, J.D. and Jackson, J.M., 2008. Rapid identification of steatite-enstatite polymorphs at various temperatures. Journal of the European Ceramic Society, 28, 2459-62.
  • Rohan, P., Neufuss, K., Matejícek, J., Dubsky ́, J., Prchlík, L. and Holzgartner, C., 2004. Thermal and mechanical properties of cordierite, mullite and steatite produced by plasma spraying. Ceramics International, 30, 597-603.
  • Soykan, H.S., 2007. Low-temperature fabrication of steatite ceramics with boron oxide addition. Ceramics International, 33, 911-914.
  • Şentürk, E., Duman, S., Bağcı, S., Soykan, H.S. and Aslanoğlu, Z., 2016. Humidity sensing properties of steatite ceramic containing B 2 O 3 . Sensors and Actuators A: Physical, 240, 80-84.
  • Terzić, A., Obradović, N., Stojanović, J., Pavlović, V., Andrić, L., Olćan, D. andĐorđević, A., 2017. Influence of different bonding and fluxing agents on the sintering behavior and dielectric properties of steatite ceramic materials. Ceramics International, 43, 13264-13275.
  • Tunç, T. and Demirkıran, Ş., 2014.The effects of mechanical activation on the sintering and microstructural properties of cordierite produced from natural zeolite. Powder Technology, 260, 7-14.
  • Valášková, M., Zdrálková, J. , Martynková, G.S., Smetana, B., Vlček, J. andŠtudentová, S., 2014. Structural variability of high purity cordierite/steatite ceramics sintered from mixtures with various vermiculites. Ceramics International, 40, 8489-8498.
  • Valášková, M., Kočí, K. andKupková, J., 2015.Cordierite/steatite/CeO 2 porous materials- Preparation, structural characterization and their photocatalytic activity.Microporous and Mesoporous Materials, 207, 120-125.
  • Vela, E., Peiteado, M., García, F., Caballero, A.C. and Fernández, J.F., 2007. Sintering behaviour of steatite materials with barium carbonate flux. Ceramics International, 33, 1325-1329.
  • Wang, W., Shi, Z., Wang, X. and Fan, W., 2016.The phase transformation and thermal expansion properties of cordierite ceramics prepared using drift sands to replace pure quartz. Ceramics International, 42, 4477-4485.
  • Wells, A.F., 1984. Structural Inorganic Chemistry. Oxford University Press, 531-619.
  • Wyckoff, R.W.G., 1963. Crystal Structures: Inorganic Compounds RXn, RnMX2, RnMX3.John Wiley & Sons, 410-450.
  • Yalamaç, E. and Akkurt, S., 2006. Additive and intensive grinding effects on the synthesis of cordierite.Ceramics International, 32, 825-832.
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ