HORMESİS: TOKSİK AJANLARIN DÜŞÜK DOZLARINA UYUM SAĞLAMADA ÖNCÜL FENOMEN

Hormesis, toksik maddelerin düşük konsantrasyonlarında yaşamı devam ettirebilmeyi ve bu maddelere karşı geliştirilen adaptif olguları açıklamak için öne sürülen bir kavramdır. Bu kavram, toksik molekül ve ortam şartlarının hem yaşamı destekleyici hem de yok edici iki zıt etkiye (bifazik etki) sahip olduğunu ifade eder. Toksik ajanların düşük dozları ile aktifleşen hormesis mekanizması, canlılara adaptif cevap kazandı- rır. Hücrelerdeki adaptif cevabın özel bir şekli olan hormesiste, koruyucu proteinler, antioksidan enzimler ve şaperon proteinleri rol alır. Hormetik uyaranlara bağlı olarak artış gösteren bu moleküller, hücrenin ayakta kalmasını destekler. Hormetik uyaranlar, cevaplar ve bunların düzenlenmesi, hormetik sistemin bileşenlerini oluşturur. Organizmalardaki hormetik olayların moleküler ve hücresel seviyede anlaşılması; yeni ilaçların geliştirilmesinde, hastalıkların önlenmesi ve tedavisinde yeni ufuklar açacaktır. Ayrıca son yıllarda toksik ajanların hormetik davranışları, mahkemeye delil olarak sunulmaya başlanmış, büyük ceza indirimleri sağlanmış veya davalar dü- şürülmüştür. Dolayısıyla maruz kalınan toksik maddenin doz cevap ilişkisinin yorumlanmasında bilirkişiler ve yargıçlar, hormesis olgusunu dikkate almalı ve toplanan deliller bu olgu ışığında değerlendirilmelidir.

NTECEDENT PHENOMENA FOR ADAPTATION TO LOW DOSES OF TOXIC AGENTS

Hormesis explains survivingwith low concentrations of toxicsubstances and adaptive eventsacquired towards these toxicsubstances. This term expressesthat toxic molecules and environmentconditions have both survivalsupportive and destructiveeffects (biphasic). Hormesis providesadaptive response to livingsystems which is activated withlow concentration of toxic substances.Protective proteins, antioxidantenzymes and chaperonproteins take role in hormesiswhich is a special form of adaptiveresponse in cells. These moleculesincreasing by hormetic stimulation,support cells for surviving.Hormetic stimulants, responsesand their regulation build up thehormetic system’s components.Understanding the molecularand cellular levels of hormeticprocesses in organisms providedevelopment of new drugs andtreatments, prevention of diseases.Moreover, hormetic behaviorsof toxic agents appeared to bepresented to courts as scientificevidence in recent years, so thateither the abatement or dismissalbecame possible. Therefore,legal experts and judges shouldtake hormesis into considerationin terms of dose-response relationshipinterpretation for theexposed toxic agents, and alsocollected evidences should beevaluated through the hormesisperspective.

___

  • 1. Calabrese EJ, Blain R. The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicol Appl Pharmacol 2005;202:289-301.
  • 2. Salem H. Toxicology of low-level exposure: Evidence for hormesis? J. Appl. Toxicol. 2000;2:89.
  • 3. Hoffman GL, Keir R, Thorne R, Houston ME, Young C. Chronic exercise stress in mice depresses splenic T lymphocyte mitogenesis in vitro. Clin Exp Immunol 1986;66:551-7.
  • 4. Calabrese EJ. Hormesis: Why it is important to toxicology and toxicologists. Environ Toxicol Chem 2008;27(7):1451-74.
  • 5. Hoffmann GR. A perspective on the scientific, philosophical, and policy dimensions of hormesis. Dose Response 2009;7:1-51.
  • 6. Kramer HF, Goodyear LJ. Exercise, MAPK, and NF-kappaB signaling in skeletal muscle. J Appl Physiol 2007;103:388–95.
  • 7. Bimei J, Liang P, Deng G, Tu Z, Liu M, Xiao X. Increased stability of Bcl-2 in HSP70-mediated protection against apoptosis induced by oxidative stress. Cell Stress and Chaperones 2011;16:143–52.
  • 8. Mattson MP, Maudsley S, Martin B. BDNF and 5-HT: a dynamic duo in age related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2004;27:589–94.
  • 9. Bellavite P, Chirumbolo S, Marzotto M. Hormesis and its relationship with homeopathy. Hum Exp Toxicol. 2010;29(7):573-9.
  • 10. Duracková Z. Some current insights into oxidative stress. Physiol Res. 2010;59:459- 69.
  • 11. Lindsay DG. Nutrition, hormetic stress and health. Nutr Res Rev. 2005;18:249-58.
  • 12. Klaassen CS. CD structure, function, expression, genomic organization and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP) and ABCG2 (BCRP) efflux transporters. Int J Toxicol 2006;25(4):231-59.
  • 13. Calabrese EJ. Tumor resistance explained by hormesis. Dose Response 2010;8:80-2.
  • 14. Ambudkar SV, Chava KS, Sauna ZE, Gottesman MM. P-glycoprotein: From genomics to mechanism. Oncogene 2003;22:7468-85.
  • 15. Kaczorowski DJ, Zuckerbraun BS. Carbon monoxide: medicinal chemistry and biological effects. Curr Med Chem 2007;14:2720-5.
  • 16. Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Sylvia Park, et al. A network of rice genes associated with stress response and seed development. Proc Natl Acad USA. 2003;100:4945-50.
  • 17. Zhang Q, Pi J, Woods CG, Jarabek AM, Clewell HJ, Andersen ME. Hormesis and adaptive cellular control systems. Dose Response 2008;6(2):196-208.
  • 18. Vaisermann AM. Hormesis and epigenetics: Is there a link? Ageing Res Rev 2011;10(4):413-21.
  • 19. Zediak VP, Wherry EJ, Berger SL, The contribution of epigenetic memory to immunologic memory. Curr Opin Genet Dev 2011;21(2):154-9.
  • 20. Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 2009;12(2):133-9.
  • 21. Appenzellera BMR, Tsatsakisb AM. Hair analysis for biomonitoring of environmental and occupational exposure to organic pollutants: State of the art, critical review and future needs. Toxicol Lett. 2011; doi:10.1016/j.toxlet.2011.10.021
  • 22. Marchant GE. Hormesis and toxic torts. Hum Exp Toxicol 2008;27:97-107.