Yumurta Kabuğundaki Çatlakların Bilgisayar Görüntüsü ve Hough Dönüşümü Kullanılarak Tanımlanması
Yumurta çatlağı, pazara göndermeden önce tespit edilmesi gereken başlıca sorunlardan birisidir. Bir yandan, çatlamış yumurtalar yüksek oranda bakteriyel bulaşma potansiyeline sahiptir ve aynı zamanda paketlerdeki diğer sağlam yumurtalar üzerinde olumsuz etkilere neden olurlar, böylece bu bulaşma insan sağlığını tehlikeye sokabilir. Bu çalışmanın amacı, yumurta kabuğu çatlaklarını tanımlamak için bilgisayarlı bir yöntemi doğru, tahribatsız ve hızlı bir yöntem olarak önermektir. Kusurları saptamak için, çizgilerin çatlaklar olarak kabul edilmesiyle görüntülerde çizginin belirlenmesinde, tanımlama tabanlı özellik avantajına sahip, güvenilir ve kaliteli bir yöntem olarak Hough dönüşümü kullanılmıştır. Veri seti, görüntüleri kontrollü koşullarda çekilen 45 sağlıklı ve 35 kırık yumurtada içeren 80 adet yumurtadan oluşmaktadır. Yumurta kabuklarındaki çatlaklar, Canny kenar detektörü ve son olarak Hough dönüşümü içeren ortak ön işleme işlemleri uygulanarak belirlenmiştir. Analiz bölümünde, sağlıklı örnekleri kırık olanlardan sınıflandırmak için doğrusal diskriminant analizi kullanılmıştır. Sonuçlar, sağlam ve çatlamış yumurtaların tanımlanmasında ve sınıflandırılmasında önerilen yaklaşımın tatmin edici olduğunu göstermiş; böylece doğru tanımlamada doğruluk oranının % 90.1'ine ulaşabilmiştir. Her bir yumurtanın çatlaklarını belirleme zamanı, 0.7 saniye olmuştur.
Identification of Cracks in Eggs Shell Using Computer Vision and Hough Transform
Egg crack is one the main challenges that should be identified before sending it to market. In one hand, cracked eggs have strong potential in taking bacterial contamination and also they cause negative effects on the other intact eggs at packages so that this contamination endanger human’s health. The objective of the current study was to propose a computerized method as an accurate, non- destructive and a fast method to identify the eggshell cracks. In order to detect the defects, the Hough transformation as a confident and qualified method with having the advantage of description based feature was used in determining the line in the images with assuming cracks as lines. The dataset consisted of 80 eggs which were included 45 healthy and 35 cracked eggs where taken images under controlled conditions. The cracks on the egg shells were identified by applying common preprocessing operations, a Canny edge detector and finally Hough transform. In the analysis section, the linear discriminant analysis was used to classify healthy samples from cracked ones. The results demonstrated satisfactory of the proposed approach in identification and classification of intact and cracked eggs so that we were able to reach 90.1% of accuracy in correct identification. The time for identifying the cracks in each egg was obtained 0.7 seconds.
___
- 1- AghKhani, M.H., Pourreza, A. 2007. Egg sorting by machine vision method. Journal of Agricultural Engineering Research. Vol. 8, No. 3, 150-141.
- 2. Cho, H.K., Choi, W.K., Paek, J.H., 2000. Detection of surface cracks in shell eggs by acoustic impulse method. Transactions of the ASAE 43 (6), 1921–1926.
- 3. DeKetelaere, B., Bamelis, F., Kemps, E., Decuypere, E., DeBaerdemaeker, J., 2004. Non-destructive measurements of egg quality. World’s Poultry Science 60 (3), 289–302.
- 4. Jin, C., X, L., Ying, Y., 2015. Eggshell crack detection based on the time-domain acoustic signal of rolling eggs on a step-plate. Journal of Food Engineering 153 (1), 53- 62.
- 5. Lawrence, K.C., Yoon, S.C., Heitschmidt, G.W., Jones, D.R., Park, B., 2008. Imaging system with modified- pressure chamber for crack detection in shell eggs. J. Sens. Instrum. Food Saf. Qual. 2, 122–166.
- 6. Li, P., Wang, Q., Zhang, Q., Cao, SH., Liu, Y., Zhu, T., Non- destructive detection on the egg crack based on wavelet transform. IERI Procedia 55(2), 372- 382.
- 7. Li, Y., Dhakal, S., Peng, Y., 2012. A machine vision system for identification of micro-crack in eggshell. Journal of Food Engineering 109 (1), 127- 134.
- 8. Mertens, K., Kemps, B., Perianu, C., Baerdemaeker, J., Decuypere, E., Ketelaere, B., 2011. Advances in egg defect detection, quality assessment and automated sorting and grading. Improving the Safety and Quality of Eggs and Egg Products 24(2), 209- 241.
- 9. Nashat, S.,Abdullah, A., Abdullah, M.Z., 2014. Machine vision for crack inspection of biscuits featuring pyramid detection scheme. Journal of Food Engineering 120 (1), 233- 247.
- 10. Priyadumkol, J., Kittichaikarn, C., Thainimit, S., 2017. Crack detection on unwashed eggs using image processing. Journal of Food Engineering 209 (2), 76- 82.
- 11. Zhao, Y., Wang, J., Lu, Q., Hiang, R., 2010. Pattern recognition of eggshell crack using PCA and LDA. Innovative Food Science & Emerging Technologies Journal of Food Engineering 11 (3), 520- 525.