DETERMINATION OF LANDSLIDE SUSCEPTIBILITY IN THE MELET RIVER BASIN (ORDU, TURKEY) BY BIVARIATE STATISTICAL ANALYSIS METHOD

In this study, it was aimed to determine landslide susceptibility in the Melet River Basin, where landslides cause significant economic losses and the effects of which continue to be seen currently. A landslide is the most serious natural disaster in the basin located within the borders of Ordu province due to geomorphological-geological and climatic features. In this study, frequency ratio and Landslide Susceptibility Analysis (LSA) methods were used from among bivariate statistical analysis methods. The bivariate analysis method reveals the effect of different variables on landslide formation. Geology and topography maps and satellite images constitute the basic data in this study. The lithology layer was obtained from the geology maps covering the basin, while Digital Elevation Model (DEM) was used to obtain slope, aspect, elevation, curvature and topographic wetness index (TWI) layers. Rivers were digitized from the topography maps and the distance to river layer of was obtained. Normalized Difference Vegetation Index (NDVI) layer was formed using the Landsat 8 satellite image and distance to road layer was formed via Open Street Map data. The landslide inventory layer pertaining to the study area was obtained using the Directorate of Mineral Research and Exploration (MTA) Samsun plate and land surveys. The inventory map was overlapped with the layers and subsections of the layer with landslide and without landslide were identified. In accordance with the method, the layer weights were determined and registered on the attributes table of the reclassified layers. Susceptibility map was created by adding the layers with determined weights. The proportion of the areas with high and very high landslide susceptibility in the map obtained via frequency ratio method in Melet River Basin account for 12%, the proportion of the moderate susceptibility area account for 27% and the proportion of the low and very low susceptibility areas account for 61%. According to LSA, high and very high susceptibility areas account for 11%, moderate susceptibility areas account for 26%, very low and low susceptibility areas account for 63%. Ulubey and Kabadüz districts are classified as high and very high susceptibility areas within the basin boundaries. Considering the climate characteristics of the study area, landslides are inevitable due to hydrometeorological events and anthropogenic effects. For this reason, planning should be made by taking into account the susceptibility map.

___

Achour, Y, Boumezbeur, A, Hadji, R, Chouabbi, A, Cavaleiro, V, Bendaoud, E. A. (2017). “Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine.” Algeria. Arab J Geosci, 10 (194).

Afet ve Acil Durum Yönetimi Başkanlığı. (2015). Bütünleşik Tehlike Haritalarının Hazırlanması, Heyelan-Kaya Düşmesi Temel Kılavuz.

Akgün, A. (2018). “Bulanık Uyarlanabilir Rezonans Teorisi (FuzzyART) Yöntemi Kullanılarak Heyelan Duyarlılık Analizi: Tonya (Trabzon) Örneği.” GÜFBED/GUSTIJ, (1): 135-146.

Aktaş, H. (1992). Orta Karadeniz Bölümünün (Yeşilırmak-Melet Suyu-Kelkit Vadisi Arası) Bitki Coğrafyası. Yayınlanmamış Doktora Tezi, İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.

Anbalagan, R. (1992). “Landslide hazard evaluation and zonation mapping in mountainous terrain.” Eng. Geol., 32, 269–277.

Avci, V. Sunkar, M. 2016. The Distribution of Landslides Observed in Murat River Valley Between Bingöl and Palu (Elazığ) by Geomorphological Factors. Recent Research in Interdisciplinary Sciences (Chapter 31), Sofia: University, St Klement Ohridsky-Publishing House.

Ayalew, L. Yamagish,i H. Ugawa, N. (2004). “Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan.” Landslides, 1:73–81.

Ayalew, L. Yamagishi, H. (2005). “The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan.” Geomorphology, 65:15–31.

Bayrak, T. Ulukavak, M. (2009). “Trabzon heyelanları.” Electronic Journal of Map Technologies, 1(2), 20-30.

Beven, K. J, Kirkby, M. J. (1979). “Physically based, variable contributing area model of basin hydrology.” Hydrol Sci J, 24:43–69.

Bogolomov, L. A. (1963). “Topografical Interpretation of Aerial Photographs of Natural Landscape.” Moscow, Gosgeoltekhizdat, JPRS, 17-771.

Borisone, G. Bottino, G. (1990). “A practical approach for hazard evaluation of rock slopes in 25 Mountainous Areas”, Proceedings of 6th international IAEG congress, Balkema.

Budimir, M. E. A., Atkinson, P. M. and Lewis, H. G. (2015). “A systematic review of landslide probability mapping using logistic regression.” Landslides, 12, 419–436.

Carrara, A. Cardinali, M. Detti, R. Guzzetti, F. Pasqui, V. Reichenbach, P. (1991). “GIS techniques and statistical models in evaluating landslide hazard.” Earth. Surf. Proc. Land., 16, 427–445, 1991.

Chauhan, S. M. Sharma, M. K. Arora, N. K. Gupta. (2010). “Landslide Susceptibility Zonation through Ratings Derived from Artificial Neural Network.” International Journal of Applied Earth Observation and Geoinformation, 12 (5): 340–350.

Clerici, A. Perego, S. Tellini, C. Vescovi, P. (2006). “A GIS-based automated procedure for landslide susceptibility mapping by the Conditional Analysis method: the Baganza valley case study (Italian Northern Apennines).” Environ Geol., 50: 941–961.

Cornforth, D.H. (2004). Landslides in practice. John wiley & sons.

Cevik, E. Topal, T. (2003). “GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey).” Environ Geol, 44:949–962.

Çellek, S. (2015). “AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi).” Jeoloji Mühendisliği Dergisi, 39 (2).

Çiçek, İ. (1985). Türkiye’nin Özellikle Doğu Karadeniz Bölümü’nde Heyelan Olayları ve Ekonomiye Etkileri. Yayınlanmamış Yüksek Lisans Tezi, Gazi Üniversitesi Sosyal Bilimler Enstitüsü, Ankara.

Dağ, S. (2007). Çayeli (Rize) ve Çevresinin İstatistiksel Yöntemlerle Heyelan Duyarlılık Analizi. Yayınlanmamış Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon.

Dai, F.C. Lee, C. F. (2002). “Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong.” Geomorphology, 42:213–228.

Das, I. Stein, A. Kerle, N. Dhadwal, V. K. (2012). “Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models.” Geomorphology, 179:116–125.

Dhakal, A. S. Amada, T. Aniya, M. (1999). “Landslide hazard mapping and the application of GIS in the Kulekhani watershed, Nepal.” Mt. Res. Dev., 19, 3–16.

Davis, P. H. (1965-1988), Flora of Turkey and the East Aegean Island, I-X. Edinburgh:Edinburgh at the University Press.

Demir, G. (2018). “Coğrafi Bilgi Sistemleri ile Suşehri (Sivas) Heyelan Duyarlılık Analizi.” GÜFBED/GUSTIJ, 8 (1), 96-112

Ding, Q. Chen, W. Hong, H. (2017). “Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping.” Geocarto Int, 32 (6), 619–639.

Doğu, A. F. Çiçek, İ. Gürgen, G. (1989). “23 Haziran 1988 Çatak Heyelanı (Trabzon-Maçka).” Atatürk Kültür, Dil ve Tarih Yüksek Kurumu Coğrafya Bilim ve Uygulama Kolu Coğrafya Araştırmaları Dergisi, 1(1), 103-107.

Dölek, İ., 2009, Bolaman Çayı Havzası’nın Uygulamalı Jeomorfoloji Etüdü, Yayınlanmamış Doktora Tezi, İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.

Duman, T. Y. T. Çan. Ö. Emre. (2011). 1/1.500.000 Türkiye Heyelan Envanteri Haritası, Ankara: Maden Tetkik ve Arama Genel Müdürlüğü Özel Yayınlar Serisi -27, Ankara.

Emre, Ö. Duman, T. Y. Olgun, Ş. Özalp, S. ve Elmacı, H (2012). 1/250.000 Ölçekli Türkiye Diri Fay Haritası Serisi MTA Genel Müdürlüğü, Ankara.

Erener, A. Lacasse, S. (2007). “Heyelan Duyarlılık Haritalamasında Cbs Kullanımı”, Ulusal Coğrafi Bilgi Sistemleri Kongresi Bildiriler Kitabı, Trabzon.

Erinç, S. (1945). “Kuzey Anadolu Kenar Dağlarının Ordu-Giresun Kesiminde Landşaft Şeritleri.” Türk Coğrafya Dergisi, 7-8.

Fell, R. Corominas, J. Bonnard, C. Cascini, L. Leroi, E. Savage, W. Z. (2008). “Guidelines for landslide susceptibility, hazard and risk zoning for land use planning.” Eng Geol, 102:85–98.

Fernandes, N. F. Guimara ˜ es, R. F. Gomes, RAT. Vieira, B. C. Montgomery, D. R. Greenberg, H. (2004). “Topographic controls of landslides in Rio de Janeiro: field evidence and modelling.” Catena, 55:163– 181.

Galli, M. Ardizzone, F. Cardinali, M. Guzzetti, F. Reichenbach, P. (2008). “Experimental acute renal failure. Dissertation, University of California. Comparing landslide inventory maps.” Geomorphology, 94:268– 289.

Guzzetti, F. Carrara, A. Cardinali, M. Reichenbach, P. (1999). “Landslide hazard evaluation: a review of current techniques and their application in a multiscale study, Central Italy.” Geomorphology, 31:181–216.

Gökçeoğlu, C. Ercanoglu, M. (2001). “Heyelan duyarlılık haritalarının hazırlanmasında kullanılan parametrelere ilişkin belirsizlikler.” Yerbilimleri, 23, 189-206.

Gökçeoğlu, C. (2012). “Discussion on “Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS.” Eng. Geol. 129– 130, 104–105.

Gönençgil, B. (2016). Ordu İlinin İklim Özellikleri, Memleket Pusulası Ordu, Editörler: Cemalettin Şahin, T. Ahmet ERTEK, İstanbul: Eski Babil Yayınları.

Görüm, T. (2016). Ordu İlinin Doğal Afetleri, Memleket Pusulası Ordu, Editörler: Cemalettin Şahin, T. Ahmet ERTEK, İstanbul:Eski Babil Yayınları.

Görüm, T. (2018). “Tectonic, topographic and rock-type influences on large landslides at the northern margin of the Anatolian Plateau.” Landslides DOI 10.1007/s10346-018-1097-7

Günal, N. (2016). Ordu İlinin Biyo coğrafyası, Memleket Pusulası Ordu, Editörler: Cemalettin Şahin, T. Ahmet ERTEK, İstanbul: Eski Babil Yayınları.

Gürgen, G. (1993). Bolaman Çayı-Melet Irmağı Arasında Perşembe Yarımadasının Uygulamalı Fiziki Coğrafyası. Yayınlanmamış Doktora Tezi, Ankara Üniversitesi Sosyal Bilimler Enstitüsü.

Gürgen, G. (2016). Ordu İlinin Hidroğrafyası, Memleket Pusulası Ordu, Editörler: Cemalettin Şahin, T. Ahmet ERTEK, İstanbul: Eski Babil Yayınları.

Hadji, R, Abd, e. B, Limani, Y. Baghem, M. Abd el M. C. Demdoum, A. (2013) “Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria.”Quat Int, 302, 224–237.

Hakyemez, H. Y. Papak, İ. (2002). 1/500000 Ölçekli Jeoloji Haritası Samsun paftası, Ankara: Maden Tetkik Arama Genel Müdürlüğü Jeoloji Etütleri Dairesi.

Hatipoğlu, İ. K. (2017). Melet Irmağı Orta ve Aşağı Çığırının Uygulamalı Jeomorfolojisi. Yayınlanmamış Doktora Tezi, Ondokuz Mayıs Üniversitesi Sosyal Bilimler Enstitüsü, Samsun.

Hoşgören, M. Y. (1974-1977). “İnegöl Havzası’nda Arazi Kaymaları ile İlgili Gözlemler.” İstanbul Üniversitesi Coğrafya Enstitüsü Dergisi, 20-21.

Jakob, M. (2000). “The impacts of logging on landslide activity at clayoquot sound, British Columbia.” Catena, 38, 279–300.

Lan, H. X. Zhou, C. H. Wang, LJ. Zhang, H. Y. Li, R. H. (2004). “Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China.” Eng Geol, 76, 109–128.

Lee, S. Choi, J. Woo, I. (2004). “The effect of spatial resolution on the accuracy of landslide susceptibility mapping: a case study in Boun, Korea.” Geosci J, 8, 51–60.

Lee, S. (2005). “Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data.” Int J Remote Sens, 26, 1477–1491.

Lin, L. Lin, Q. Wang, Y. (2017). “Landslide susceptibility mapping on a global scale using the method of logistic regression.”Nat. Hazards Earth Syst. Sci., 17, 1411–1424.

Lineback, G. M, Marcus, W. A, Aspinall, R. Custer, S. G. (2001). “Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho.”Geomorphology, 37, 149–165.

Lin, M. L. Tung, C. C. (2003). “A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake.”Eng Geol, 71, 63–77.

Mene´ ndez, D. R. Marqı´ nez, J. (2002). “The influence of environmental and lithologic factors on rockfall at a regional scale: evaluation using GIS.”Geomorphology, 43, 117–136.

Moreiras, S. M. (2005). “Landslide susceptibility zonation in the Rio Mendoza Valley, Argentina.” Geomorphology, 66, 345–357.

Moore, I. D. Grayson, R. B. Ladson, A. R. (1991). “Digital terrain modeling: a review of hydrological, geomorphological and biological applications.” Hydrological Processes, 5, 3–30.

Nandi, A. Shakoor, A. (2009). “A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses.” Eng Geol, 110,11–20.

Nefeslioğlu, H. A. Gökçeoğlu, C. Sönmez, H. Görüm, T. (2011). “Medium-scale hazard mapping for shallow landslide initiation: the Büyükköy catchment area (Çayeli, Rize, Turkey).” Landslide, 8(4), 459-483.

Özerk, C. O. (2004). Melet Havzası’nın (Ordu) Hidrojeoloji İncelemesi. Yayınlanmamış Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.

Pachauri, A. K. Pant, M. (1992). “Landslide hazard mapping based on geological attributes.” Eng. Geol., 32, 81– 100.

Parise, M. (2001). “Landslide mapping techniques and their USA in the assessment of the landslide hazard.” Phys Chem Earth, 26(9), 697–703.

Pekcan, N. (1996). “Karadeniz Bölgesi Heyelanları ve Önlenmesi Yolunda Önerilerimiz.” İ.Ü. Edebiyat Fakültesi Coğrafya Bölümü Dergisi, 4.

Perotto-Baldiviezo, H. L. Thurow, T. L. Smith, C. T. Fisher, R. F. Wu, X. B. (2004). “GIS based spatial analysis and modeling for landslide hazard assessment in steeplands, southern Honduras.” Agric Ecosys Environ, 103, 165–176.

Rasyid, A. R. Bhandary, N. P. Yatabe, R. (2016). “Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia.”. Geoenviron Disas., 3,19.

Santacana, N. Baeza, B. Corominas, J. De, Paz. A. Marturia´, J. (2003). “A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet area (Eastern Pyrenees, Spain).” Nat Hazards, 30, 281–295.

Sharma, S. Mahajan, A. K. (2018). “A comparative assessment of information value, frequency ratio and analytical hierarchy process models for landslide susceptibility mapping of a Himalayan watershed, India.” Bulletin of Engineering Geology and the Environment.

Shrestha, D. P. Zink, J. A. Van, Ranst. E. (2004). “Modelling land degradation in the Nepalese Himalaya.” Catena, 57, 135–156.

Tangestani, M. H. (2004). “Landslide susceptibility mapping using the fuzzy gamma approach in a GIS, Kakan catchment area, southwest Iran.” Aust J Earth Sci, 51, 439–450.

Taşoğlu, I. K. Citiroglu, H. K. Mekik, Ç. (2016). “GIS-based landslide susceptibility assessment: a case study in Kelemen Valley (Yenice—Karabuk, NW Turkey).” Environ Earth Sci.

Terlien, M. T. J. Van Asch, T. W. J. Van Westen, C. J. (1995). Deterministic modelling in GIS-based landslide hazard assessment, in: Geographical information systems in assessing natural hazards, edited by: Carrara, A. and Guzzetti, F., Kluwer Academic Publishing, the Netherlands, 57–77.

TSMS. (2017). Ordu ilinin meteorolojik verileri, Meteoroji Genel Müdürlüğü, Ankara.

Tucker, C. (1979). “Red and Photographic Infrared Linear Combination for Monitoring Vegetation.” Remote Sensing of Environment, 8, 127- 150.

Uzun, A. (1992). “Kop Dağı Heyelanı.” Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 7, 272-282.

Uzun, A., Zeybek, H. İ., Bahadır, M. ve Hatipoğlu, İ. K. (2016). “Yeniköy Landslide, Persembe/ Ordu.” The Journal of Academic Social Science Studies, (50), 247 – 259.

Verstappen, H. Th. (1983). Applied Geomorphology. The Netherlands: ITC Enschede.

Van Westen, C. J. (1993). Applicaiton of Geographic Information Systems to Lanslide Hazard Zonation, ITC Publication Number 15, The Netherlands.

Wu, W. M. Sidle, R. C. (1995). “A distributed slope stability model for steep forested basins.” Water Resour. Res., 31, 2097–2110.

Yılmaz, I. (2009). “A Case Study From Koyulhisar (Sivas-Turkey) For Landslide Susceptibility Mapping By Artificial Neural Networks.” Bulletin of Engineering Geology and The Environment, 68 (3), 297-306.

Yılmaz, C., Zeybek, H. İ. ve Uzun, A. (2012). “Korgan (Ordu) İlçe Merkezi Heyelanları.” Ulusal Jeomorfoloji Sempozyumu. Antakya.

Zhou, C. H. Lee, C. F. Li, J., Xu, Z. W. (2002). “On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong.” Geomorphology, 43, 197–207.

https://www.openstreetmap.org/#map=6/39.031/35.252 (10/09/2018)

https://earthexplorer.usgs.gov/ (10/09/2018)

https://www.haberturk.com/yerel-haberler/57932029-kabaduz-karayolunda-heyelan (10/05/2018)

http://www.afisgazetesi.com/haber-ulubey-de-korkutan-heyelan-6133.html (10/05/2018)

http://www.milliyet.com.tr/kabaduz-karayolunda-heyelan-ordu-yerelhaber-2536138/ (10/05/2018)

http://www.afisgazetesi.com/haber-ulubey-de-korkutan-heyelan-6133.html, (10/05/2018)