Toprak özelliklerinin belirlenmesinde spektrofotometrik yansımalardan yararlanma olanakları

Hassas tarım bileşenlerini kullanılarak toprak özelliklerinin belirlenmesi ile toprak yönetimi ve korumasının etkilerini artırmak ve tarımsal girdi maliyetlerini azaltmak amaçlanmaktadır. Toprak fiziksel ve kimyasal özelliklerinin hızlı ve güvenilir bir biçimde belirlenerek toprak haritalaması amacı ile değerlendirilmesinde spektrofotometrelerden elde edilen yansıma değerleri kullanılabilmektedir. Spektrofotometreden elde edilen yansıma değerlerinin hassas tarım uygulamalarında kullanılabilmesi için tam çapraz doğrulamalı (full cross-validation) kısmi en küçük kareler (partial least square-PLS) regresyon analizi uygulanarak toplam modeli oluşturmak gerekmektedir. Yapılan regresyon analizi sonucunda oluşturulan modele ait $R^{2}$ değerlerine bağlı olarak belirlenmesi istenen toprak özelliği ile ilgili tahmin edilebilirlik durumu incelenmektedir. Bu araştırmada toprak özelliklerinin belirlenmesinde spektrofotometreden yararlanma olanakları incelenmiştir.

Possibilities of using spectrophotometric reflectance to determine soil properties

The application and usage of precision agriculture technologies targeted reduction of agricultural input and improvement of effects of soil management and conservation. Spectrophotometers are used for fast and accurate measurement of soil physical and chemical properties to create soil mapping. To use reflection values obtained from spectrophotometer for precision agriculture application, Partial least squares (PLS) regression analyses with full cross-validation were performed to establish a model. Regression results show that the predictability performance of the model for desired soil properties. In this research possibilities of using spectrophotometer to determine soil properties have been examined.

___

  • Ben-Dor, E., ve A. Banin, 1990. Near-infrared reflectance analysis of carbonate concentration in soils. Appl. Spectrosc. 44:1064–1069.
  • Boettinger, J.L., D.W. Howell, A.C. Moore, A.E. Hartemink ve S. Kienast-Brown, 2010. Digital Soil Mapping. Bridging Research, Environmental Application, and Operation Series: Progress in Soil Science. Vol. 2. ISBN 978-90-481-8862-8.
  • Bogrekci, I. ve W. S. Lee, 2004. Spectral signatures of common phosphate in soils and their effect on absorbance spectra of soil samples with different phosphorus concentration. ASAE/CSAE Meeting Paper No. 04 3114. ASAE, St. Joseph, MI.
  • Brodský, L., A. Klement, V. Penízek, R. Kodešová ve L. Boruvka, 2011. Soil and Water Research 6 (4) Prague: Institute of Agricultural Economics and Information, 165-172.
  • Brown D.J., 2007. Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed. Geoderma. 140(4):444-453.
  • Bulut, E. ve A. Alın, 2009. Kısmi En Küçük Kareler Regresyon Yöntemi Algoritmalarından Nipals ve PLS - Kernel Algoritmalarının Karşılaştırılması ve Bir Uygulama. Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 24(2):127-138.
  • C´ecillon L., B.G. Barthes, C. Gomez, D. Ertlen, V. Genot, M. Hedde, A. Stevens ve J. J. Brun, 2009. “Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS). European Journal of Soil Science. 60:770–784.
  • Chang, C.W., D.A. Laird, M.J. Mausbach ve C.R. Hurburgh, 2001. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 65:480–490.
  • Chang, G.W., D.A. Laird, ve G.R. Hurburgh, 2005. Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties. Soil Science. 170:244–255
  • Fystro, G. 2002. The prediction of C and N content and their potential mineralisation in heterogeneous soil samples using Vis-NIR spectroscopy and comparative methods. Plant and Soil. 246:139–149.
  • Gomez, C., R.A. Viscarra Rossel ve A.B. McBratney, 2008. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma. 146:403–411.
  • Hartemink, A.E., 2008. Soil map density and nation’s wealth and income. pp. 53–66. In: Hartemink, A.E., McBratney, A.B., and Mendonca-Santos, M.L. (eds.), Digital Soil Mapping with Limited Data. Springer, Dordrecht.
  • Kooistra, L., R. Wehrens, R.S.E.W. Leuven ve L.M.C. Buydens, 2001. Possibilities of visible-near-infrared spectroscopy for the assessment of soil contamination in river floodplains. Anal. Chim. Acta. 446: 97–105
  • Maleki, M.R., A.M. Mouazen, B. DeKetelaere, H. Ramon ve J. De Baerdemaeker, 2008. On-the-go variable-rate phosphorus fertilisation based on a visible and near-infrared soil sensor. Biosytems Engineering. 99:35 – 46
  • Malley, D.F., P.D. Martin, L.M. McClintock, L. Yesmin, R.G. Eilers ve P. Haluschak, 2000. Feasibility of analysing archived Canadian prairie agricultural soils by near infrared reflectance spectroscopy. In ‘‘Near Infrared Spectroscopy: Proceedings of the 9th International Conference’’ (A. M. C. Davies and R. Giangiacomo, Eds.), pp. 579–585. NIR Publications, Chichester, UK.
  • Martin, P.D., D.F. Malley, G. Manning, ve L. Fuller, 2002. Determination of soil organic carbon and nitrogen at the field level using near-infrared spectroscopy. Can. J. Soil. Sci. 82:413-422.
  • Mouazen, A.M., J. DeBaerdemaeker, H. Ramon, 2005. Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer. Soil Tillage Res. 80:171–183.
  • Mouazen, A.M., R. Karoui, J. DeBaerdemaeker, H. Ramon, 2006. Characterization of soil water content using measured visible and near infrared spectra. Soil Sci. Soc. Am. J. 70:1295-1302.
  • Pirie A., B. Singh, ve K. Islam, 2005. Ultra-violet, visible, near-infrared, and mid-infrared diffuse reflectance spectroscopic techniques to predict several soil properties. Aust. J. Soil Res. 43:713–721.
  • Savitsky, A. ve M.J.E. Golay, 1964. Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem. 36:1627-1639.
  • Stenberg, B. ve E. Nordkvist, 1996. Near infrared reflectance measurements to assess the chemical and physical variations in arable soils. In ‘‘Near Infrared Spectroscopy: The Future Waves’’ (A. M. C. Davies and P. Williams, Eds.), pp. 498–504. NIR Publications, Chichester, UK/Montreal, Canada.
  • Stenberg, B., R. Viscarra Rossel, A.M. Mouazen, J. Wetterlind, 2010. Near infrared spectroscopy for soil analysis in practical agriculture, forestry and environmental monitoring. Advances in Agronomy. 107:163-215.
  • Sudduth K.A. ve Hummel J.W. 1991. Evaluation of reflectance methods for soil organic matter sensing. Transactions of the ASAE, 34(4):1900-1909.
  • Tekin, Y., Z. Tümsavaş ve A.M. Mouazen, 2012. Effect of moisture content on prediction of organic carbon and pH using visible and near-infrared spectroscopy. SSSAJ. 76 (1):188-198.
  • Terhoeven-Urselmans, T., T.G. Vagen, O. Spaargaren, K.D. Shepherd, 2010. Prediction of soil fertility properties from a globally distributed soil mid-infrared spectral library. Soil Science Society of America Journal. 74 (5):1792-1799.
  • Türker U. 2012. Hassas Tarım. http://www.hassastarim.com/wp-content/uploads/2011/11/Hassas-tarim_populer.pdf. Erişim Mayıs 2012.
  • Vatandaş, M., M. Güner ve U. Türker. 2005. Hassas Tarım Teknolojileri. TMMOB Ziraat Mühendisleri Odası 6. Teknik Kongresi.:347–365, 3–7 Ocak 2005, Ankara.
  • Viscarra Rossel, R.A. ve A.B. McBratney, 2008. Diffuse reflectance spectroscopy as a tool for digital soil mapping, Chapter 13, pp. 165–172. In: Hartemink A.E., McBratney, A.B., and Mendonça-Santos, L. (eds.), Digital Soil Mapping with Limited Data. Developments in Soil Science Seris. Elsevier Science, Amsterdam.
  • Viscarra Rossel, R.A., D.J.J. Walvoort, A.B. McBratney, L.J, Janik, J.O. Skjemstad, 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma. 131:59–75.
  • Yang H. 2011. Spectroscopic Calibration for Soil N and C Measurement at a Farm Scale. 2011 3rd International Conference on Environmental Science and Information Application Technology (ESIAT, 2011), Procedia Environmental Sciences 10:672 – 677.