Responses of maize to full and limited ırrigation at different plant growth stages

Bu çalışma, yarı nemli bir iklim bölgesinde, mısır bitkisinin farklı bitki büyüme dönemlerinde uygulanan sulama suyu ile verim arasındaki ilişkileri araştırmak ve bitkinin sulamaya karşı en kritik büyüme dönemlerini belirlemek amacıyla yürütülmüştür. Tarla denemeleri, hibrit Pioneer 31P41 çeşidiyle killi tınlı bir toprak üzerinde 2008 ve 2009 yıllarında yürütülmüştür. Bitkinin bilinen üç kritik gelişme dönemi; vejetatif (V), çiçeklenme (F) ile tane oluşum ve olgunlaşma (T) göz önüne alınmış ve susuz (kontrol), tüm fenolojik gelişme dönemlerinde sulama yapılması (VFG) ile 15 farklı kısıntılı sulama uygulaması (V, F, G, VF, VG, FG, $V_{75}FG$, $V_{50}FG$, $V_{25}FG$, $VF_{75}G$, $VF_{50}G$, $VF_{25}G$, $VFG_{75}$, $VFG_{50}$ and $VFG_{25}$) olmak üzere toplam 17 deneme konusu oluşturulmuştur. En yüksek mevsimlik bitki su tüketimi (ortalama 1133 mm), VFG konusundan belirlenmiştir. Farklı büyüme dönemlerinde uygulanan kısıntılı sulama uygulamaları, verim ve değerlendirmeye alınan verim bileşenleri üzerinde farklı etkiye sahip olmuştur. En yüksek tane ve kuru madde verimleri VFG ve $VFG_{75}$ konularından elde edildiğinden yerel koşullar altında, bu sulama uygulamalarının en iyi seçim olacağı sonucuna varılmıştır. Ayrıca, mısır bitkisinin su kısıntısına en duyarlı dönemlerinin sırasıyla çiçeklenme ve vejetatif büyüme olduğu saptanmıştır.

Farklı bitki büyüme dönemlerinde uygulanan tam ve kısıntılı sulama uygulamalarına mısır bitkisinin tepkisi

This study was carried out to investigate the relationships between yield and irrigation water applied at different growth stages and to determine the most critical stage(s) for maize (Zea mays L.) in a sub–humid environment. A rainfed (non–irrigated) treatment as the control, full irrigation (VFG) and 15 different irrigation treatments (V, F, G, VF, VG, FG, $V_{75}FG$, $V_{50}FG$, $V_{25}FG$, $VF_{75}G$, $VF_{50}G$, $VF_{25}G$, $VFG_{75}$, $VFG_{50}$ and $VFG_{25}$) with full or limited (25, 50 and 75%) irrigation water, were applied to the hybrid Pioneer 31P41 (Pioneer Seed Company) planted on clay-loam soil, at three critical development stages: vegetative (V), flowering (F), and grain-filling (G) in the years of 2008 and 2009. The highest seasonal evapotranspiration (an average of 1133 mm) was measured in the VFG treatment. Limited irrigation applied at different growing stages had different effects on the yield–related characters examined. According to average of two years, the highest grain yield (20.52 t $ha^{-1}$) and dry matter yield (33.78 t $ha^{-1}$) were obtained from the VFG and $VFG_{75}$ treatments, respectively. Therefore, we confirm that VFG and $VFG_{75}$ irrigations are the best choice for maximum yield under the local conditions. The flowering and vegetative were also determined as the most sensitive stages to water deficit of maize.

___

  • Anaç, S., M.A. Ul and I.H. Tuzel. 1992. Corn yield as affected by deficit irrigation. Presented at the Advances in Planning, Design and Management of Irrigation Systems as Related to Sustainable Land Use, Center for Irrig Eng (CIE), September 14–17, Leuven, Belgium, p 795–800.
  • Beadle, C.L. 1985. Plant growth analysis. Techniques in bioproductivity and photosynthesis. Edit by J. Coombos, D.O. Hall, S.P. Kong and J.M.O. Scurlock. Chapter 2, p. 20–25.
  • Bos, M.G. 1980. Irrigation efficiencies at crop production level. ICID Bull. 29: 18-25.
  • Bryant, K.J., V.W. Benson, J.R. Kiniry, J.R. Williams and R.D. Lacewell. 1992. Simulating corn yield response to irrigation timings: Validation of the epic model. J. Produc. Agric. 5: 237–242.
  • Çakir, R. 2004. Effect of water stress at different development stages on vegetative and reproductive growth of maize. Field Crops Res. 89: 1–16.
  • Çarpıcı, E.B., N. Çelik and G. Bayram. 2010. Yield and quality of forage maize as influenced by plant density and nitrogen rate. Turk. J. Field Crops 15(2): 128–132.
  • Dagdelen, N., E. Yilmaz, F. Sezgin, and T. Gurbuz. 2006. Water–yield relation and water use efficiency of cotton (Gossypium Hirsutum L.) and second crop corn (Zea mays L.) in western Turkey. Agric. Water Manage. 82 (1–2): 63–85.
  • Doorenbos, J. and A.H. Kassam. 1979. Yield response to water. United Nations FAO. Pub 33, Rome. 193 p.
  • El–Hendawy, S.E. and U. Schmidhalter, 2010. Optimal coupling combinations between irrigation frequency and rate for drip–irrigated corn grown on sandy soil. Agric. Water Manage. 97: 439–448.
  • El Neomani, A.A., A.K.A. El Halim, H.A. Zeynu and A.K. Abd El Halim, 1990. Response of maize (Zea mays L.) to irrigation intervals under different levels of nitrogen fertilization. Egyptian J. Agron. 15: 147–158.
  • Garrity, P.D., D.G. Watts, C.Y. Sullivan and J.R. Gilley. 1982. Moisture deficits and grain sorghum performance, evapotranspiration yield relationships. Agron. J. 74: 815–820.
  • Gençoğlan, C. and A. Yazar. 1999. The effects of deficit irrigations on corn yield and water use efficiency. Turkish J. Agric. Forest. 23: 233–241.
  • Howell, T.A., A. Yazar, A.D. Schneider, D.A. Dusek and K.S. Copeland. 1995. Yield and water use efficiency of corn in response to LEPA irrigation. Trans. ASAE 38(6): 1737–1747.
  • Igbadun, H.E., A.K.P.R. Tarimo, B.A. Salim and H.F. Mahoo. 2007. Evaluation of selected crop water production functions for an irrigated maize crop. Agric. Water Manage. 94: 1–10.
  • Igbadun, H.E., B.A. Salim, A.K.P.R. Tarimo and H.F. Mahoo. 2008. Effects of deficit irrigation scheduling on yields and soil water balance of irrigated maize. Irrig. Sci. 27: 11–23.
  • Istanbulluoglu, A., I. Kocaman and F. Konukcu, 2002. Water use–production relationship of maize under Tekirdag conditions in Turkey. Pakistan J. Bio. Sci. 5(3): 287–291.
  • Jama, A.O. and M.J. Ottman. 1993. Timing of the first irrigation in corn and water stress conditioning. Agron. J. 85 (6): 1159–1164.
  • Kang, S., W. Shi and J. Zhang. 2000. An improved water–use efficiency for maize grown under regulated deficit irrigation. Field Crops Res. 67: 207–214.
  • Kar, G. and H.N. Verma. 2005. Phenology based irrigation scheduling and determination of crop coefficient of winter maize in rice fallow of eastern India. Agric. Water Manage. 75: 169–183.
  • Karam, F., Breidy, J., Stephan, C., Rouphael, J., 2003. Evapotranspiration, yield and water use efficiency of drip irrigated corn in the Bekaa Valley of Lebanon. Agric. Water Manage. 63(2): 125–137.
  • Karasu, A., Oz, M., Bayram, G., Turgut, I., 2009. The effect of nitrogen levels on forage yield and some attribultes in some hybrid corn (Zea mays indentata Sturt.) cultivars sown as second crop for silage corn. Afr. J. Agric. Res. 4(3): 166–170.
  • Lamm, F.R., Manges, H.L., Stone, L.R., Khan, A.H., Rogers, D.H., 1995. Water requirement of subsurface drip–irrigated corn in northwest Kansas. Trans. ASAE. 38(2): 441–448.
  • Maas, E. V., & Hoffman, G. J. (1977). Crop salt tolerance – Current assessment. Journal of the Irrigation and Drainage Division. 103: 115–134.
  • Mengü, G.P. and M. Özgürel, 2008. An evaluation water–yield relations in maize (Zea mays L.) in Turkey. Pakistan J. Bio. Sci., 11(4): 517–524.
  • Naescu, V. 2000. The irrigation effect on silo maize yield in Romanian plain. Probleme de Agrofitotehnie Teoretica si Aplicata, 22(1–2): 51–57.
  • NeSmith, D.S. and J.T. Ritchie. 1992. Short– and long–term responses of corn to a pre–anthesis soil water deficits. Agron. J. 84: 107–113.
  • Oktem, A, M. Simsek and A.G. Oktem. 2003. Deficit irrigation effects on sweet corn (Zea mays saccharata sturt) with drip irrigation system in a semi–arid region I. Water–yield relationship. Agric. Water Manage. 61: 63–74.
  • Oktem, A. 2008. Effect of water shortage on yield, and protein and mineral compositions of drip–irrigated sweet corn in sustainable agricultural systems. Agric. Water Manage. 95: 1003–1010.
  • Panda, R.K., S.K. Behera and P.S. Kashyap. 2004. Effective management of irrigation water for maize under stressed conditions. Agric. Water Manage. 66: 181–203.
  • Pandey, R.K., J.W. Maranville and A. Admou. 2000. Deficit irrigation and nitrogen effects on maize in a Sahelian enviroment. I. Grain yield and yield components. Agric. Water Manage. 46(1): 1–13.
  • Payero J.O., M. Steven, S. Irmak and D.D. Tarkalson. 2006. Yield response of corn to deficit irrigation in a semiarid climate. Agric. Water Manage. 84: 895–908.
  • Sepaskhah, A.R. and M.H. Khajehabdollahi. 2005. Alternate furrow irrigation with different irrigation intervals for maize (Zea mays L.). Plant Produc. Sci. 8(5): 592–600.
  • Steel, R.G.D. and J.H. Torrie. 1980. Principles and procedures of statistics. A biometrical approach. McGraw–Hill, New York, pp 186–187.
  • Şehirali, S. 2002. Tohumluk ve Teknolojisi. Trakya Üniversitesi Tekirdağ Ziraat Fakültesi, Fakülteler Matbaası, ISBN: 975-94559-1-9, Istanbul, 422 p. (in Turkish).
  • Traore, S.B., R.E. Carlson, C.D. Pilcher and M.E. Rice. 2000. Bt and Non-Bt maize growth and development as affected by temperature and drought stress. Agron. J. 92: 1027-1035.
  • Turgut, I., A. Duman, U. Bilgili and E. Acikgoz. 2005. Alternate row spacing and plant density effects on forage and dry matter yield of corn hybrids (Zea mays L.). Journal of Agronomy and Crop Science, 191: 146–151.
  • US Salinity Laboratory. 1954. Diagnosis and improvement of saline and alkaline soils. US Department of Agriculture. Handbook no: 60. 160 p.
  • Yazar, A., S.M. Sezen and B. Gencel, 2002. Drip irrigation of corn in the Southeast Anatolia Project (GAP) area in Turkey. Irrig. and Drain. 51: 293–300.
  • Yıldırım, O., S. Kodal, F. Selenay, Y.E. Yıldırım and A. Ozturk. 1996. Corn grain yield response to adequate and deficit irrigation. Turk. J. Agric. Forest. 20(4): 283–288.
  • Zhang, H., X. Wang, M. You and C. Liu. 1999. Water–yield relations and water use efficiency winter wheat in the North China Plain. Irrig. Sci. 19: 37–45.