Ekolojik Niş Modelleme: Apis mellifera Popülasyon Dağılımı Üzerine Deneysel Çalışma

Ekosistem çeşitliliğinde en önemli türlerden olan bal arısı, Apis mellifera türü dünya genelinde birçok bölgeye yayılım göstermiştir fakat iklim değişikliği sebebiyle yakın gelecekte sayılarının azalma tehdidi ile karşı karşıyadır. Bu nedenle iklimsel değişkenlerin bal arıları üzerindeki etkileri daha detaylı incelenmeli ve potansiyel negatif etki faktörleri belirlenmelidir. Bu çalışmada Birleşik Krallık, Hollanda, Fransa, Almanya ve Zambiya’da bulunduğu kaydedilen A. mellifera verileri iki farklı izdüşümü modeli yardımıyla şimdiki zaman ve gelecek tahminlerine yansıtıldı. Gelecek tahmininde Avrupa genelinde bal arılarında gözle görülür bir nüfus azalışı kaydedilirken Kuzey Amerika’da değişim, günümüze göre, çok azdı. Daha sonra PCA analiz yöntemi kullanarak 19 iklimsel değişken bir arada değerlendirildi ve günümüzden geleceğe büyüme oranları hesaplandı. Bu çalışma doğrultusunda genel olarak Avrupa’da gelecekte en çok değişiklik gösteren iklimsel değişkenlerin Kuzey Amerika’da gelecekte kritik bir değişikliğe uğramayacağı sonucuna ulaşıldı. Sonuç olarak, bu tür için yüksek orandaki nüfus azalışında etkili olan ve etkilerini yakın gelecekte Avrupa’da gösterecek olan değişkenler kışların şiddeti, en soğuk bölgenin ortalama sıcaklığı, yağış ve sıcaklık mevsimselliği olarak belirlendi.

ECOLOGICAL NICHE MODELING: AN EMPIRICAL STUDY ON Apis mellifera POPULATION DISTRIBUTION

Apis mellifera is one of the species that aid in the maintenance of ecosystem diversity and spread all around the world, yet their numbers are subjected to a decline in the near future. In this study, A. mellifera species’ occurrence data obtained from the United Kingdom, Netherlands, France, Germany, Zambia was studied by using the present and future projection models generated by using principal component analysis (PCA) on 19 bioclimatic variables. Regarding the future projections, the honey bee species will be significantly decreased in number in Europe, whereas in North America, the change from current to future was somewhat ambiguous. Therefore, the growth rates of the bioclimatic variables from present to the future for both Europe and North America were compared with each other to conclude the most effective bioclimatic variables on the species’ occurrences. In conclusion, the most effective bioclimatic variables that caused the major decline in European clades of this species were assessed as the severity of winters, precipitation seasonality, temperature seasonality, and the mean temperature of the wettest quarter.

___

  • Abou-Shaara, F, Darwish, A. (2021). Expected prevalence of the facultative parasitoid Megaselia scalaris of honey bees in Africa and the Mediterranean region under climate change conditions. International Journal of Tropical Insect Science 41(4), 3137-3145, doi.org/10.1007/s42690-021-00508-5.
  • Apis mellifera Linnaeus, 1758. (2022). [https://www.gbif.org/species/1341976] (retrieved by: 26.01.2022).
  • Arias, M, Sheppard, W. (2005). Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data. Molecular phylogenetics and evolution 37(1), 25-35, doi.org/10.1016/j.ympev.2005.02.017.
  • Breiman, L. Random forests. Machine learning. 2001;45(1), 5-32, doi.org/10.1111/j.1600-0587.2008.05742.x
  • Burrill, R, Dietz, A. The response of honey bees to variations in solar radiation and temperature. Apidologie. 1981;12(4), 319-328, Retrieved from https://www.apidologie.org/.
  • Cánovas, F, De la Rúa, P, Serrano, J, Galián, J. Geographical patterns of mitochondrial DNA variation in Apis mellifera iberiensis (Hymenoptera: Apidae). Journal of Zoological Systematics and Evolutionary Research. 2008;46(1), 24-30, doi.org/10.1111/j.1439-0469.2007.00435.x.
  • Delgado, D, Pérez, M, Galindo-Cardona, A, Giray, T, Restrepo, C. Forecasting the influence of climate change on agroecosystem services: potential impacts on honey yields in a small-island developing state. Psyche. 2012, doi.org/10.1155/2012/951215.
  • Flores, M, Gil-Lebrero, S, Gámiz, V, Rodríguez, I, Ortiz, A, Quiles, J. Effect of the climate change on honey bee colonies in a temperate Mediterranean zone assessed through remote hive weight monitoring system in conjunction with exhaustive colonies assessment. Science of the Total Environment. 2019;653, 1111-1119, doi.org/10.1016/j.scitotenv.2018.11.004.
  • Han, F, Wallberg, A, Webster, M. From where did the Western honeybee (Apis mellifera) originate? Ecology And Evolution, 2012;2(8), 1949-1957, doi.org/10.1002/ece3.312.
  • Hung, K, Kingston, J, Albrecht, M, Holway, D, Kohn, J. The worldwide importance of honey bees as pollinators in natural habitats. Proceedings Of The Royal Society B: Biological Sciences. 2018;285(1870), 20172140, doi: 10.1098/rspb.2017.2140.
  • Jaffé, R, Dietemann, V, Crewe, R, Moritz, R. Temporal variation in the genetic structure of a drone congregation area: an insight into the population dynamics of wild African honeybees (Apis mellifera scutellata). Molecular Ecology. 2019;18(7), 1511-1522, doi.org/10.1111/j.1365-294x.2009.04143.x.
  • Kauffeld, N, Everitt, H, Taylor, E. Honey bee problems in the Rio Grande Valley of Texas. American Bee Journal. 1976;116, 220-222, Retrieved from https://americanbeejournal.com/.
  • Le Conte, Y, Navajas, M. Climate change: impact on honey bee populations and diseases. Revue Scientifique et Technique-Office International des Epizooties. 2008;27(2), 499-510.4, Retrieved from https://www.researchgate.net/publication/23285587.
  • Makori, D, Fombong, A, Abdel-Rahman, E, Nkoba, K, Ongus, J, Irungu, J, et al. Predicting Spatial Distribution of Key Honeybee Pests in Kenya Using Remotely Sensed and Bioclimatic Variables: Key Honeybee Pests Distribution Models. ISPRS International Journal Of Geo-Information. 2017;6(3), 66, doi.org/10.3390/ijgi6030066.
  • Meixner, M. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of invertebrate pathology. 2010;103, S80-S95, doi.org/10.1016/j.jip.2009.06.011.
  • Paudel, Y, Mackereth, R, Hanley, R, Qin, W. Honey bees (Apis mellifera L.) and pollination issues: Current status, impacts, and potential drivers of decline. Journal of Agricultural Science. 2015;7(6), 93, doi.org/10.5539/jas.v7n6p93.
  • Peil, A, Aranda, R. Potential Niche Modeling Distribution and Wing Geometric Morphometrics of Apis mellifera In The Brazilian Pantanal. Sociobiology. 2021;68(2), 5629, doi.org/10.13102/sociobiology.v68i2.5629.
  • PennState, Eberly College of Science, 6.1 - Introduction to GLMs. [https://online.stat.psu.edu/stat504/lesson/6/6.1] (retrieved by: 26.01.2022).
  • Sharif, Z, Jiang, X, Puswal, S. M. Pests, parasitoids, and predators: Can they degrade the sociality of a honeybee colony, and be assessed via acoustically monitored systems. J Entomol Zool Stud. 2021;8(3),1248-1260, Retrieved from https://www.entomoljournal.com/archives/?year=2020&vol=8&issue=3&ArticleId=6918.
  • Shuel, R. The production of nectar and pollen. The hive and the honey bee. 1992;401-436.
  • Techer, A, Clemencet, J, Simiand, C, Turpin, P, Garnery, L, Reynaud, B, Delatte, H. Genetic diversity and differentiation among insular honey bee populations in the southwest Indian Ocean likely reflect old geographical isolation and modern introductions. Plos One. 2017;12(12), e0189234, doi.org/10.1371/journal.pone.0189234.
  • Thuiller, W, Lafourcade, B, Engler, R, Araújo, M. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography. 2009;32(3), 369-373, doi.org/10.1111/j.1600-0587.2008.05742.x.
  • VanEngelsdorp, D, Hayes Jr, J, Underwood, R, Pettis, J. A survey of honey bee colony losses in the US, fall 2007 to spring 2008. PloS one. 2008;3(12), e4071, doi.org/10.1371/journal.pone.0004071.
  • Watanabe, M. Pollination worries rise as honey bees decline. Science. 1994;265(5176), 1170-1171, doi.org/10.1126/science.265.5176.1170.
  • WorldClim, Future climate, 5 minutes spatial resolution. [https://www.worldclim.org/data/cmip6/cmip6_clim5m.html] (retrieved by:25.01.2022).
  • WorldClim, Historical climate data. [https://www.worldclim.org/data/worldclim21.html] (retrieved by: 25.01.2022).
Uludağ Arıcılık Dergisi-Cover
  • Başlangıç: 2001
  • Yayıncı: U.Ü.Arıcılık Geliştirme-Uygulama ve Araştırma Merkezi
Sayıdaki Diğer Makaleler

Bal Arılarının Dünyanın Manyetik Alanına Duyarlılığı Yapımda Yardımcı Olabilirmi?

Alexander POKUTSA, Jacques MUZART

BAL ARISI (Apis mellifera) ZEHRİNİN ETLİK PİLİÇLERDE KULLANIMI

Erva ESER, Serkan ERAT

Türkiye'nin Marmara Bölgesinden Elde Edilen Bazı Propolislerin Anti-üreaz Aktivitesinin Belirlenmesi

Zehra CAN, Yakup KARA, Sevgi KOLAYLI, İbrahim ÇAKMAK

Arı sütünün obezite üzerine etkileri

Aslıhan DEMİRKAYA, Gulcin SAGDİCOGLU CELEP

Endonezya Propolis'in Hamile Farelerde İmmünomodülatör Etkisi: Bir Ön Sonuç

Al Mukhlas FİKRİ, Ahmad SULAEMAN, Sri Anna MARLİYATİ, Mokhamad FAHRUDİN, Ekowati HANDHARYANİ

Yeşil Sentez ile Propolis Temelli Gümüş Nanopartikül Sentezlenmesi ve Biyokimyasal Karakterizasyonu

Merve KESKİN, Gulsen KAYA, Şaban KESKİN

Arı Kovanlarından Propolis Üretimi için Reçine Bakımından Zengin Alanları Tespit Etmek için Coğrafi Bilgi Sistemlerini ve Uzaktan Algılamayı Kullanma

Abdulraouf AMRO, Hossam ABOU-SHAARA

Cezayir'in Kuzeydoğu Bölgesinden Toplanan Bazı Arı Polenlerinin Palinolojik Analizi, Fenolik Bileşenleri ve Anti-İnflamatuar Aktivitesi

Mohamed Badreddine MOKHTARI, Ibtissem EL OUAR, Ibtissem ZEGHINA, Maya Abir TARTOUGA, Asma GHORAB, Laid BAHRI, Chawki BENSOUICI

Endonezya Propolis'in Hamile Farelerde İmmünomodülatör Etkisi: Bir Ön Sonuç

Al Mukhlas FİKRİ, Ahmad SULAEMAN, Sri Anna MARLİYATİ, Mokhamad FAHRUDİN, Ekowati HANDHARYANİ

Türkiye'nin Marmara Bölgesinden Elde Edilen Bazı Propolislerin Anti-üreaz Aktivitesinin Belirlenmesi

Zehra CAN, Yakup KARA, Sevgi KOLAYLI, İbrahim ÇAKMAK