The Optimization of Wide-Type Zebrafish, Danio rerio (Hamilton, 1822) Reproduction in Low Temperatures under Controlled Conditions

Zebrafish is popular aquarium fish and laboratory model species but some aspects of advanced spawning technologies,especially of reproduction and rearing in low temperatures (>25°C), which involve the production of high quality and viablegametes, should be studied. In the present study fish before spawning were reared at cold thermal regime: 19-20°C. Fromthree tested temperatures for fish spawning, the highest spawning effectiveness was noted at 23°C. The highest rate of embryosurvival was noted when the temperature in which the spawners were kept before spawning was the lowest (19°C). In thespawning of small breeders groups, the number of males should be higher than the number of females. If the sex rate was 1:1,the lowest embryo survival was noted. From the breeding perspective fish of this species should be reproduced again shortlyafter the completed spawning a time between spawns should be 20 to 60 days if the spawners were kept at 19°C. Keeping thefish between spawning periods more than 40 days results in a significant deterioration of quality of gametes, expressed asembryo survival. It was observed that spawners of this species produce viable gametes and spawn successfully every 20 days,during a few following spawning periods without changes of embryo survival.

___

Ackerly, K.L. & Ward, A.B. (2016). How temperatureinduced variation in musculoskeletal anatomy affects escape performance and survival of zebrafish (Danio rerio). Journal of Experimental Zoology, 325A, 25– 40. http://dx.doi.org/10.1002/jez.1993

Balon, E.K. (2004). About the oldest domesticates among fishes. Journal of Fish Biology, 65 (Suppl. A), 1–27. http://dx.doi.org/10.1111/j.0022-1112.2004.00563.x

Brooks, S., Tyler, C.R., & Sumptem, J.P. (1997). Egg quality in fish: what makes a good egg? Reviews in Fish Biology and Fisheries, 7, 387–416.

Chen, W., & Ge, W. (2013). Gonad differentiation and puberty onset in the zebrafish: evidence for the dependence of puberty onset on body growth but not age in females. Molecular Reproduction and Development, 80, 384–392. http://dx.doi.org/10.1002/mrd.22172

Cieśla, M., Jonczyk, R., Gozdowski, D., Śliwinśki, J., Rechulicz, J., & Andrzejewski, W. (2014). Changes in ide Leuciscus idus (L.) females’ reproductive parameters after stimulation with carp pituitary homogenate (CPH) and Ovopel: the effect of domestication? Aquaculture International, 22, 77–88. http://dx.doi.org/10.1007/s10499-013-9668-z

Cortemeglia, C. & Beitinger, T.L. (2005). Temperature Tolerances of Wild-Type and Red Transgenic Zebra Danios. Transactions of the American Fisheries Society, 134(6), 1431 – 1437. http://dx.doi.org/10.1577/T04-197.1

Csenki, Z., Zaucker, A., Kovács, B., Hadzhiev, Y., Hegyi, A., Lefler, K.-K., … Müller, F. (2010). Intraovarian transplantation of stage I-II follicles results in viable zebrafish embryos. The Internationa Journal of Developmental Biology 54: 585 – 589. http://dx.doi.org/10.1387/ijdb.082786zc

Dai, Y.-J., Jia, Y.-F., Chen, N., Bian, W.-P., Li, Q.-K., Ma, Y.-B., Chen, Y.-L., & Pei, D.-S. (2014). Zebrafish as a model system to study toxicology. Environmental Toxicology and Chemistry, 33, 11–17. http://dx.doi.org/10.1002/etc.2406

Desai, K., Spikings, E., & Zhang, T. (2015). Short-Term chilled storage of zebrafish (Danio rerio) embryos in cryoprotectant as an alternative to cryopreservation. Zebrafish 12(1), 111–120. http://dx.doi.org/10.1089/zeb.2013.0961

Gioacchini, G., Maradonna, F., Lombardo, F., Bizzaro, D., Olivotto, I., & Carnevali, O. (2010). Increase of fecundity by probiotic administration in zebrafish (Danio rerio). Reproduction, 140, 953–959. http://dx.doi.org/10.1530/REP-10-0145

Hakuć-Błażowska, A., Kupren, K., Turkowski, K., Targońska, K., Jamróz, M., Krejszeff, S., … Kucharczyk, D. (2009). Comparison of economic effectiveness of applying different hormonal preparations for reophile cyprinid fish reproduction stimulation based on the example of asp Aspius aspius (L.) and ide Leuciscus idus (L.). Polish Journal of Natural Sciences, 24(4), 224–234. http://dx.doi.org/10.2478/v10020-009-0021-y

Hubbs, C. & Bryan, C. (1974). Effect of parental temperature experience on thermal tolerance of eggs of Menidia audens. In: The Early Life History of Fish. Blaxter JHS, (eds), pp. 431–435. Springer-Verlag, Berlin.

Johnson, A.C., Turko, A.J., Klaiman, J.M., Johnston, E.F., & Gillis, T.E. (2014). Cold acclimation alters the connective tissue content of the zebrafish (Danio rerio) heart. Journal of Experimental Biology, 217, 1868–1875. http://dx.doi.org/10.1242/jeb.101196

Kraak, G.V.D. & Pankhurst, N.M. (1996). Temperature effects on the reproductive performance offish. In: Global Warning: Implications for freshwater and marine fish. Woods CM and McDonalds DG (eds), Cambridge University Press, pp. 159–176.

Kucharczyk, D., Targońska, K., Prusińska, M., Krejszeff,S., Kupren, K., Kujawa, R., & Mamcarz, A. (2008). Reproduction of Buenos Aires tetra (Hemigrammus caudovittatus) under controlled conditions. Polish Journal of Natural Sciences, 23(4), 858–865. http://dx.doi.org/10.2478/v10020-008-0069-0

Kujawa, R., Kucharczyk, D., & Mamcarz, A. (1999). A model system for keeping spawners of wild and domestic fish before artificial spawning. Aquacultural Engineering, 20, 85–89. http://dx.doi.org/10.1016/S0144-8609(99)00004-7

Kulkeaw, K., Ishitani, T., Kanemaru, T., Ivanovski, O., Nakagawa, M., Mizuochi, C., … Sugiyama, D. (2011). Cold exposure down-regulates zebrafish pigmentation. Genes to Cells, 16, 358–367. http://dx.doi.org/10.1111/j.1365-2443.2011.01498.x

Leskela, A., & Kucharczyk, D. (1995). The effect of temperature on the growth of three forms of European white-fish (Coregonus lavaretus L.) larvae. Archives of Hydrobiology Special Issues in Advanced Limnology, 46, 147–152.

Little, A.G., & Seebacher, F.(2015). Temperature determines toxicity: Bisphenol A reduces thermal tolerance in fish. Environmental Pollution 197, 84–89. http://dx.doi.org/10.1016/j.envpol.2014.12.003

Little, A.G., & Seebacher, F. (2014). Thyroid hormone regulates cardiac performance during cold acclimation in zebrafish (Danio rerio). Journal of Experimental Biology. 217, 718–725. http://dx.doi.org/10.1242/jeb.096602

Majhi, S.K., & Das, S.K. (2013). Thermal Tolerance, Oxygen Consumption and Stress Response in Danio dangila and Brachydanio rerio (Hamilton, 1822) Acclimated to Four Temperatures. Turkish Journal of Fisheries and Aquatic Sicences, 13, 359–365. http://dx.doi.org/10.4194/1303-2712-v13_2_19

Nasiadka, A., & Clark, M.D. (2012). Zebrafish Breeding in the Laboratory Environment. ILAR Journal 53, 161– 168. http://dx.doi.org/10.1093/ilar.53.2.161

Nowosad, J., Kucharczyk, D., & Targońska, K. (2017). Enrichment of Zebrafish Danio rerio (Hamilton, 1822). Diet with Polyunsaturated Fatty Acids Improves Fecundity and Larvae Quality. Zebrafish (in Press). http://dx.doi.org/10.1089/zeb.2017.1416.

Raghavan, R., Tlusty, M., Prasad, P., Pereira, B., Ali, A., & Sujarittanonta, L. (2007). Should endemic and threatened freshwater ornamental fishes of Kerala part of the Western Ghats biodiversity hotspot be captive bread for international trade? Current Science, 93, 1211–1213.

Schaefer, J., & Ryan, A. (2006). Developmental plasticity in the thermal tolerance of zebrafish Danio rerio. Journal of Fish Biology, 69, 722–734. http://dx.doi.org/10.1111/j.1095-8649.2006.01145.x

Segner, H. (2009). Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 149, 187–195. http://dx.doi.org/10.1016/j.cbpc.2008.10.099

Seki, S., Kouya, T., Tsuchiya, R., Valdez, Jr, D.M., Jin, B., Koshimoto, C., Kasai, M., & Edashige, K. (2011). Cryobiological properties of immature zebrafish oocytes assessed by their ability to be fertilized and develop into hatching embryos. Cryobiology 62, 8–14. http://dx.doi.org/10.1016/j.cryobiol.2010.11.003

Seki, S., Kouya, T., Valdez, Jr, D.M., Jin, B., Hara, T., Saida, N., … Edashige, K. (2007). The permeability to water and cryoprotectants of immature and mature oocytes in the zebrafish (Danio rerio). Cryobiology, 54, 121–124. http://dx.doi.org/10.1016/j.cryobiol.2006.11.005

Spence, R., Runa, K.F., Reichard, M., Huq, K.A.,Waha, M.A, Ahmed, Z.F., & Smith, C. (2006). The distribution and habitat preferences of the zebrafish in Bangladesh. Journal of Fish Biology, 69, 1435–1448. http://dx.doi.org/10.1111/j.1095-8649.2006.01206.x

Targońska, K. (2007). Application of Chironomus larvae in culture of chosen fish species. 2007 PhD thesis. Warmia and Mazury University in Olsztyn, 140pp (in Polish with English summary).

Tlusty, M. (2002). The benefits and risks of aquacultural production for the aquarium trade. Aquaculture 205, 203–219. http://dx.doi.org/10.1016/S0044-8486(01)00683-4 Tye, M., Rider, D., Duffy, E.A., Seubert, A., Lothert, B., &

Schimmenti, L.A. (2015). Nonhatching Decapsulated Artemia Cysts As a Replacement to Artemia Nauplii in Juvenile and Adult Zebrafish Culture. Zebrafish 12(6), 457 – 461. http://dx.doi.org/10.1089/zeb.2014.1031

Vergauwen, L., Hagenaarsa, A., Blusta, R., Knapena, D. (2013). Temperature dependence of long-term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: Evidence from transcript expression to physiology. Aquatic Toxicology, 126, 52– 62. http://dx.doi.org/10.1016/j.aquatox.2012.10.004

Wang, Y. & Ge, W. (2003a). Gonadotropin regulation of follisation expression in the cultured ovarian follicle cells of zebrafish, Danio rerio. General and Comparative Endocrinology, 134, 308–315.

Wang, Y. & Ge, W. (2003b). Involvement of cyclic adenosine 3’,5’-monophosphatate in the differential regulation of activin beta A and beta B expression by gonadotropin in the zebrafish ovarian follicle cells. Endocrinology 144, 491–499. http://dx.doi.org/10.1210/en.2002-220734

Zeng, Z., Johnson, S.L., Lister, J.A., & Patton, E.E. (2014). Temperature-sensitive splicing of mitfa by an intron mutation in zebrafish. Pigment Cell & Melanoma Research, 28(2), 229–232. http://dx.doi.org/10.1111/pcmr.12336
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon
Sayıdaki Diğer Makaleler

Molecular Characterisation of Microbial Diversity Associated with Oysters within a Commercial Oyster Farm

Kamarul Zaman ZARKASI, Teh Faridah NAZARI

Effects of Different Commercial Feeds and Enrichments on Biochemical Composition and Fatty Acid Profile of Rotifer (Brachionus Plicatilis, Müller 1786) and Artemia Franciscana

Kamil Mert ERYALÇIN

The Optimization of Wide-Type Zebrafish, Danio rerio (Hamilton, 1822) Reproduction in Low Temperatures under Controlled Conditions

Dariusz KUCHARCZYK, Pawel STEPIEN, Joanna NOWOSAD, Krzysztof KUPREN, Katarzyna TARGONSKA, Roman KUJAWA

Karyological Analysis of Two Species in the Subfamily Schizothoracinae (Cypriniformes: Cyprinidae) from China, with Notes on Karyotype Evolution in Schizothoracinae

Yinggui DAI, Hufeng HAN

The Correlation between the Differences in NUCB2/Nesfatin(NES) Peptide Levels and Body Weight, Lenght and Gender in Alburnus tarichi

Fatma CAF, Sibel KÖPRÜCÜ, Sermin ALGÜL, Mustafa KOYUN, Ataman Altuğ ATICI

Formulating an Early Stakeholder Involvement Plan for Marine Protected Areas (MPA) in Catanduanes Island, Philippines

Jimmy MASAGCA, Minerva MORALES, Aurora ARAOJO, Sonia SAPICO, Estrella TRIBIANA, Meda MERCADO

Photoperiodic Modulation on Growth and Behaviour of the Giant Gourami, Trichogaster fasciata (Bloch and Schneider, 1801)

Farah BANO, Mohammad SERAJUDDIN

Spawning Season, First Maturity Length and Age of 21 Fish Species from the Central Aegean Sea, Turkey

Akın Türker İLKYAZ, GÜLNUR METİN, OZAN SOYKAN, HASAN TUNCAY KINACIGİL

Effects of Acute and Chronic Air Exposure on Growth and Stress Response of Juvenile Olive Flounder, Paralichthys olivaceus

Han Kyu LIM, Jun Wook HUR

Reproductive Biology of the Common Pandora Pagellus erythrinus (Linnaeus, 1758) of Oran Bay (Algerian West Coasts)

Hadjer MAHDI, Lotfi Bensahla TALET, Zitouni BOUTİBA