Effects of High Stocking Density on Condition Factor and Profile of Free Thyroxine and Cortisol in Catla catla (Hamilton, 1822) and Labeo rohita (Hamilton, 1822)

High stocking density is a major problem in extensive aquaculture in Pakistan. Present study investigated its effect ofgrowth, levels of thyroxine (T4) and cortisol in two major carps of Pakistan; labeo (Labeo rohita) and catla (Catla catla). Onecohort of labeo (n=30) was kept at high stocking density (HD) (25 g/L). HD cohort was split into two replicates, eachcontaining a total of 15 fish. Second cohort of labeo (n=10) was reared at low stocking density (LD) of 4.4 g/L. LD cohortwas divided into two replicates, each containing a total of five fish. Similar protocol was followed for catla. Trial continuedfor the period of 30 days. At the end of trial, condition factor significantly decreased in HD cohorts of both species. Levels ofcortisol in HD cohorts (210±2.00 nmol/L in Catla catla; 425±3.00 nmol/L in Labeo rohita) were significantly higher thanthose in LD cohorts of both species. Values of T4 in HD cohorts were found to be 1.48±0.20 pmol/L in Catla catla and1.74±0.10 pmol/L in Labeo rohita at the end of trial which were significantly lower than at the commencement of trial.Suppression of growth, elevation in the levels of cortisol and decrease in profile of T4 in HD cohorts of both species was dueto stress induced by high stocking density. Furthermore, present study found that optimum stocking density for extensivefarming of both species should be approximately 4.4 g/L.

___

  • Anderson, M.J., Connell, S.D., Gillanders, B.M., Diebel, C.E., Blom, W.M., Saunders, J.E., & Landers, T.J. (2005). Relationships between taxonomic resolution and spatial scales of multivariate variation. Journal of Animal Ecology, 74, 636-646. http://dx.doi.org/10.1111/j.1365- 2656.2005.00959.x
  • Austin, B. (2006). The bacterial microflora of fish, revised. The Scientific World Journal, 6, 931- 945. http://dx.doi.org/10.1100/tsw.2002.137
  • Austin, B., & Zhang, X.H. (2006). Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Letters in Applied Microbiology, 43, 119-124. http://dx.doi.org/10.1111/j.1472-765X.2006.01989.x
  • Cao, R., Xue, C.H., Liu, Q., & Xue, Y. (2009). Microbiological, Chemical, and Sensory Assessment of Pacific Oysters (Crassostrea gigas) Stored at Different Temperatures. Czech Journal Food Science, 27, 102-108. ISSN: 1212- 1800.
  • Colwell, R.R., & Liston, J. (1960). Microbiology of shellfish. Bacteriological study of the natural flora of Pacific oysters (Crassostrea gigas). Applied Microbiology, 8, 104–109.
  • Deepanjali, A., Kumar, H.S., & Karunasagar, I. (2005). Seasonal variation in abundance of total and pathogenic Vibrio parahaemolyticus bacteria in oysters along the southwest coast of India. Applied and Environmental Microbiology, 71, 3575-3580. http://dx.doi.org/10.1128/AEM.71.7.3575- 3580.2005
  • De Hoon, M.J., Imoto, S., Nolan, J., & Miyano, S. (2004). Open source clustering software. Bioinformatics, 20, 1453-1454. http://dx.doi.org/10.1093/bioinformatics/bth078
  • DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G.L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72, 5069-5072. http://dx.doi.org/10.1128/AEM.03006-05
  • Dupont, J., Jehl-Pietri, C., & Mnard, D. (1992). Comparative study of bacterial and viral faecal contamination in shellfish: demonstration of seasonal variations. Biomedical Letters, 47, 329– 335.
  • Edgar, R.C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996-998. http://dx.doi.org/10.1038/nmeth.2604
  • Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194-2200. http://dx.doi.org/10.1093/bioinformatics/btr381
  • Edgar, R.C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113. http://dx.doi.org/10.1186/1471-2105-5-113
  • Fulton, S. (2009). Cyanobacterial blooms in Tasmania. Cyanobacterial Bloom Management, Current and Future Options, 18.
  • Garland, C., Nash, G., Summer, C. & McMeekin, T. (1983). Bacterial pathogens of oyster larvae (Crassostrea gigas) in a Tasmanian hatchery. Marine and Freshwater Research, 34, 483-487. http://dx.doi.org/10.1071/MF9830483
  • Garnier, M., Labreuche, Y., Garcia, C., Robert, M., & Nicolas, J.L. (2007). Evidence for the involvement of pathogenic bacteria in summer mortalities of the Pacific oyster Crassostrea gigas. Microbial Ecology, 53, 187-196. http://dx.doi.org/10.1007/s00248-006-9061-9
  • Green, T.J., & Barnes, A.C. (2010). Bacterial diversity of the digestive gland of Sydney rock oysters, Saccostrea glomerata infected with the paramyxean parasite, Marteilia sydneyi. Journal of Applied Microbiology, 109, 613–622. http://dx.doi.org/10.1111/j.1365- 2672.2010.04687.x
  • Hara-Kudo, Y., Nishina, T., Nakagawa, H., Konuma, H., Hasegawa, J., & Kumagai, S. (2001). Improved method for detection of Vibrio parahaemolyticus in seafood. Applied and Environmental Microbiology, 67, 5819-5823. http://dx.doi.org/10.1128/AEM.67.12.5819- 5823.2001
  • Hatje, E., Neuman, C., Stevenson, H., Bowman, J.P., & Katouli, M. (2014). Population Dynamics of Vibrio and Pseudomonas Species Isolated from Farmed Tasmanian Atlantic Salmon (Salmo salar L.): A Seasonal Study. Microbial Ecology, 68, 679-687. http://dx.doi.org/10.1007/s00248-014-0462-x
  • Holben, W., Williams, P., Saarinen, M., Särkilahti, L., & Apajalahti, J. (2002). Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon. Microbial Ecology, 44, 175-185. http://dx.doi.org/10.1007/s00248-002-1011-6
  • Hovda, M.B., Lunestad, B.T., Fontanillas, R., & Rosnes, J.T. (2007). Molecular characterisation of the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.). Aquaculture, 272, 581- 588. http://dx.doi.org/10.1016/j.aquaculture.2007.08. 045
  • Lorca, T.A. (2000). An Evaluation of the Role of Storage Temperature on the Safety and Quality of Raw Shellstock Oysters and Bluefish. Blackburg, Virginia Polytechnic Institute and State University.
  • Lyons, P.P., Turnbull, J.F., Dawson, K.A., & Crumlish, M. (2016). Phylogenetic and functional characterization of the distal intestinal microbiome of rainbow trout Oncorhynchus mykiss from both farm and aquarium settings. Journal of Applied Microbiology, 122, 347–363. http://dx.doi.org/10.1111/jam.13347
  • Neuman, C., Hatje, E., Zarkasi, K.Z., Smullen, R., Bowman, J.P., & Katouli, M. (2016). The effect of diet and environmental temperature on the faecal microbiota of farmed Tasmanian Atlantic salmon (Salmo salar L.). Aquaculture Research, 47, 660-672. http://dx.doi.org/10.1111/are.12522
  • Olafsen, J.A. (2001). Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture, 200, 223-247. http://dx.doi.org/10.1016/S0044- 8486(01)00702-5
  • Piquer, J.F. (2010). Protecting the Safety and Quality of Australian Oysters with Integrated Predictive Tools Hobart, University of Tasmania. Price, M.N., Dehal, P.S., & Arkin, A.P. (2010). FastTree 2–approximately maximum-likelihood trees for large alignments. PLOS ONE, 5, e9490. http://dx.doi.org/10.1371/journal.pone.0009490
  • Pujalte, M.J., Ortigosa, M., Macián, M.C., & Garay, E. (1999). Aerobic and facultative anaerobic heterotrophic bacteria associated to Mediterranean oysters and seawater. International Microbiology, 2, 259-266.
  • Reilly, A., & Kaeferstein, F. (1998). Food safety and products from aquaculture. Journal of Applied Microbiology, 85, 249S–257S. http://dx.doi.org/10.1111/j.1365- 2672.1998.tb05305.x
  • Ringø, E., Strøm, E., & Tabachek, J. (1995). Intestinal microflora of salmonids: a review. Aquaculture Research, 26, 773-789. http://dx.doi.org/10.1111/j.1365- 2109.1995.tb00870.x
  • Ringø, E., & Birkbeck, T. (1999). Intestinal microflora of fish larvae and fry. Aquaculture Research, 30, 73-93.
  • Ringø, E., Sperstad, S., Myklebust, R., Refstie, S., & Krogdahl, Å. (2006). Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.): The effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture, 261, 829-841. http://dx.doi.org/10.1016/j.aquaculture.2006.06. 030
  • Romero, J., Garcia-Varela, M., Laclette, J., & Espejo, R. (2002). Bacterial 16S rRNA gene analysis revealed that bacteria related to Arcobacter spp. constitute an abundant and common component of the oyster microbiota (Tiostrea chilensis). Microbial Ecology, 44, 365-371. http://dx.doi.org/10.1007/s00248-002-1063-7
  • Romero, J., Gonzalez, N., & Espejo, R.T. (2002). Marine Pseudoalteromonas sp. Composes Most of the Bacterial Population Developed in Oysters (Tiostrea chilensis) Spoiled During Storage. Journal of Food Science, 67, 2300–2303. http://dx.doi.org/10.1111/j.1365- 2621.2002.tb09544.x
  • Saldanha, A.J. (2004). Java Treeview—extensible visualization of microarray data. Bioinformatics, 20, 3246-3248. http://dx.doi.org/10.1093/bioinformatics/bth349
  • Sellner, K.G. (1997). Physiology, ecology and toxic properties of marine cyanobacteria blooms. Limnology and Oceanography, 42, 1089-1104.
  • Tarnecki, A.M., Burgos, F.A., Ray, C.L., & Arias, C.R. (2017). Fish Intestinal Microbiome: Diversity and Symbiosis Unraveled by Metagenomics. Journal of Applied Microbiology. http://dx.doi.org/10.1111/jam.13415
  • Urbanczyk, H., Ast, C.J., Higgins, M.J., Carson, J., & Dunlap, P.V. (2007). Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. International Journal of Systematic and Evolutionary Microbiology, 57, 2823-2829. http://dx.doi.org/10.1099/ijs.0.65081-0
  • Wang, Q., Garrity, G.M., Tiedje, J.M., & Cole, J.R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261-5267. http://dx.doi.org/10.1128/AEM.00062-07
  • Wu, S., Wang, G., Angert, E.R., Wang, W., Li, W., & Zou, H. (2012). Composition, diversity, and origin of the bacterial community in grass carp intestine. PLOS ONE, 7, e30440. http://dx.doi.org/10.1371/journal.pone.0030440
  • Yoon, J.H., Weiss, N., Kang, K.H., Oh, T.K., & Park, Y.H. (2003). Planococcus maritimus sp. nov., isolated from sea water of a tidal flat in Korea. International Journal of Systematic and Evolutionary Microbiology, 53, 2013-2017. http://dx.doi.org/10.1099/ijs.0.02557-0
  • Zarkasi, K.Z., Abell, G.C.J., Taylor, R.S., Neuman, C., Hatje, E., Tamplin, M.L., Katouli, M., & Bowman, J.P. (2014). Pyrosequencing-based characterization of gastrointestinal bacteria of Atlantic salmon (Salmo salar L.) within a commercial mariculture system. Journal of Applied Microbiology, 117, 18-27. http://dx.doi.org/10.1111/jam.12514
  • Zarkasi, K.Z., Taylor, R.S., Abell, G.C.J., Tamplin, M.L., Glencross, B.D., & Bowman, J.P. (2016). Atlantic Salmon (Salmo salar L.) Gastrointestinal Microbial Community Dynamics in Relation to Digesta Properties and Diet. Microbial Ecology, 71, 589–603. http://dx.doi.org/10.1007/s00248-015-0728-y
  • Zhang, J., Zhang, Y., Liu, S.N., Han, Y., & Zhou, Z.J. (2012). Modelling growth and bacteriocin production by Pediococcus acidilactici PA003 as a function of temperature and pH value. Applied Biochemistry and Biotechnology, 166, 1388-1400. http://dx.doi.org/10.1007/s12010-011-9532-4
  • Zhao, J.S., Manno, D., & Hawari, J. (2009). Psychrilyobacter atlanticus gen. nov., sp. nov., a marine member of the phylum Fusobacteria that produces H2 and degrades nitramine explosives under low temperature conditions. International Journal of Systematic and Evolutionary Microbiology, 59, 491-497. http://dx.doi.org/10.1099/ijs.0.65263-0
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon
Sayıdaki Diğer Makaleler

Analysing the Need of Communication to Improve Black Sea Fisheries Management Policies in the Riparian Countries

Mustafa ZENGİN, Vesselina MIHNEVA, Ertuğ DÜZGÜNEŞ

First Record of Humpback Dolphins in Mersin Bay, the Eastern Mediterranean, Turkey

Yeliz Doğanyılmaz ÖZBİLGİN, Ebrucan KALECİK, Ali Cemal GÜCÜ

Genetic Diversity and Population Structure of the Asian Green Mussel (Pernaviridis) in the Waters of Sabah, Malaysia Based on Mitochondrial DNA D-Loop Sequences

Jen Shi LAU, Julian RANSANGAN, Kenneth Francis RODRIGUES

The Correlation between the Differences in NUCB2/Nesfatin(NES) Peptide Levels and Body Weight, Lenght and Gender in Alburnus tarichi

Fatma CAF, Sibel KÖPRÜCÜ, Sermin ALGÜL, Mustafa KOYUN, Ataman Altuğ ATICI

Metazoan Parasite Fauna of the Red Mullet, Mullus barbatusponticus Essipov, 1927 in the Sinop Coasts of the Black Sea

Turkay ÖZTÜRK, Ali YEŞİL

Karyological Analysis of Two Species in the Subfamily Schizothoracinae (Cypriniformes: Cyprinidae) from China, with Notes on Karyotype Evolution in Schizothoracinae

Yinggui DAI, Hufeng HAN

Spawning Season, First Maturity Length and Age of 21 Fish Species from the Central Aegean Sea, Turkey

Akın Türker İLKYAZ, GÜLNUR METİN, OZAN SOYKAN, HASAN TUNCAY KINACIGİL

Effects of Different Commercial Feeds and Enrichments on Biochemical Composition and Fatty Acid Profile of Rotifer (Brachionus Plicatilis, Müller 1786) and Artemia Franciscana

Kamil Mert ERYALÇIN

Compensatory Growth Response in Oreochromis mossambicus Submitted to Short-Term Cycles of Feed Deprivation and Refeeding

Ndakalimwe Naftal GABRİEL, Edosa OMOREGIE, Tjipute MARTIN, Lesley KUKURI, Lahjia SHILOMBWELWA

Photoperiodic Modulation on Growth and Behaviour of the Giant Gourami, Trichogaster fasciata (Bloch and Schneider, 1801)

Farah BANO, Mohammad SERAJUDDIN