Molecular Characterisation of Microbial Diversity Associated with Oysters within a Commercial Oyster Farm

The diversity of microbial communities associated with oysters within a commercial mariculture system wasexamined using molecular analysis of 16S rRNA Illumina sequencing. The aim of the study is to identify microbialdiversity using molecular-based techniques, and compare the results obtained using three sampling points. Results showed,the microbial diversity associated with farmed oysters was dominated by Vibrio spp., Photobacterium spp., andPseudoalteromons spp., while Psychrilyobacter spp., Prolixibacter spp., Cytophaga spp., Planococcus spp., andExiguobacterium spp. were minor in abundance. These findings provide valuable information on the microbial community,demonstrating the microbial diversity in oysters and its major abundant species.

___

Anderson, M.J., Connell, S.D., Gillanders, B.M., Diebel, C.E., Blom, W.M., Saunders, J.E., & Landers, T.J. (2005). Relationships between taxonomic resolution and spatial scales of multivariate variation. Journal of Animal Ecology, 74, 636-646. http://dx.doi.org/10.1111/j.1365- 2656.2005.00959.x

Austin, B. (2006). The bacterial microflora of fish, revised. The Scientific World Journal, 6, 931- 945. http://dx.doi.org/10.1100/tsw.2002.137

Austin, B., & Zhang, X.H. (2006). Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Letters in Applied Microbiology, 43, 119-124. http://dx.doi.org/10.1111/j.1472-765X.2006.01989.x

Cao, R., Xue, C.H., Liu, Q., & Xue, Y. (2009). Microbiological, Chemical, and Sensory Assessment of Pacific Oysters (Crassostrea gigas) Stored at Different Temperatures. Czech Journal Food Science, 27, 102-108. ISSN: 1212- 1800.

Colwell, R.R., & Liston, J. (1960). Microbiology of shellfish. Bacteriological study of the natural flora of Pacific oysters (Crassostrea gigas). Applied Microbiology, 8, 104–109.

Deepanjali, A., Kumar, H.S., & Karunasagar, I. (2005). Seasonal variation in abundance of total and pathogenic Vibrio parahaemolyticus bacteria in oysters along the southwest coast of India. Applied and Environmental Microbiology, 71, 3575-3580. http://dx.doi.org/10.1128/AEM.71.7.3575- 3580.2005

De Hoon, M.J., Imoto, S., Nolan, J., & Miyano, S. (2004). Open source clustering software. Bioinformatics, 20, 1453-1454. http://dx.doi.org/10.1093/bioinformatics/bth078

DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G.L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72, 5069-5072. http://dx.doi.org/10.1128/AEM.03006-05

Dupont, J., Jehl-Pietri, C., & Mnard, D. (1992). Comparative study of bacterial and viral faecal contamination in shellfish: demonstration of seasonal variations. Biomedical Letters, 47, 329– 335.

Edgar, R.C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996-998. http://dx.doi.org/10.1038/nmeth.2604

Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194-2200. http://dx.doi.org/10.1093/bioinformatics/btr381

Edgar, R.C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113. http://dx.doi.org/10.1186/1471-2105-5-113

Fulton, S. (2009). Cyanobacterial blooms in Tasmania. Cyanobacterial Bloom Management, Current and Future Options, 18.

Garland, C., Nash, G., Summer, C. & McMeekin, T. (1983). Bacterial pathogens of oyster larvae (Crassostrea gigas) in a Tasmanian hatchery. Marine and Freshwater Research, 34, 483-487. http://dx.doi.org/10.1071/MF9830483

Garnier, M., Labreuche, Y., Garcia, C., Robert, M., & Nicolas, J.L. (2007). Evidence for the involvement of pathogenic bacteria in summer mortalities of the Pacific oyster Crassostrea gigas. Microbial Ecology, 53, 187-196. http://dx.doi.org/10.1007/s00248-006-9061-9

Green, T.J., & Barnes, A.C. (2010). Bacterial diversity of the digestive gland of Sydney rock oysters, Saccostrea glomerata infected with the paramyxean parasite, Marteilia sydneyi. Journal of Applied Microbiology, 109, 613–622. http://dx.doi.org/10.1111/j.1365- 2672.2010.04687.x

Hara-Kudo, Y., Nishina, T., Nakagawa, H., Konuma, H., Hasegawa, J., & Kumagai, S. (2001). Improved method for detection of Vibrio parahaemolyticus in seafood. Applied and Environmental Microbiology, 67, 5819-5823. http://dx.doi.org/10.1128/AEM.67.12.5819- 5823.2001

Hatje, E., Neuman, C., Stevenson, H., Bowman, J.P., & Katouli, M. (2014). Population Dynamics of Vibrio and Pseudomonas Species Isolated from Farmed Tasmanian Atlantic Salmon (Salmo salar L.): A Seasonal Study. Microbial Ecology, 68, 679-687. http://dx.doi.org/10.1007/s00248-014-0462-x

Holben, W., Williams, P., Saarinen, M., Särkilahti, L., & Apajalahti, J. (2002). Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon. Microbial Ecology, 44, 175-185. http://dx.doi.org/10.1007/s00248-002-1011-6

Hovda, M.B., Lunestad, B.T., Fontanillas, R., & Rosnes, J.T. (2007). Molecular characterisation of the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.). Aquaculture, 272, 581- 588. http://dx.doi.org/10.1016/j.aquaculture.2007.08. 045

Lorca, T.A. (2000). An Evaluation of the Role of Storage Temperature on the Safety and Quality of Raw Shellstock Oysters and Bluefish. Blackburg, Virginia Polytechnic Institute and State University.

Lyons, P.P., Turnbull, J.F., Dawson, K.A., & Crumlish, M. (2016). Phylogenetic and functional characterization of the distal intestinal microbiome of rainbow trout Oncorhynchus mykiss from both farm and aquarium settings. Journal of Applied Microbiology, 122, 347–363. http://dx.doi.org/10.1111/jam.13347

Neuman, C., Hatje, E., Zarkasi, K.Z., Smullen, R., Bowman, J.P., & Katouli, M. (2016). The effect of diet and environmental temperature on the faecal microbiota of farmed Tasmanian Atlantic salmon (Salmo salar L.). Aquaculture Research, 47, 660-672. http://dx.doi.org/10.1111/are.12522

Olafsen, J.A. (2001). Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture, 200, 223-247. http://dx.doi.org/10.1016/S0044- 8486(01)00702-5

Piquer, J.F. (2010). Protecting the Safety and Quality of Australian Oysters with Integrated Predictive Tools Hobart, University of Tasmania. Price, M.N., Dehal, P.S., & Arkin, A.P. (2010). FastTree 2–approximately maximum-likelihood trees for large alignments. PLOS ONE, 5, e9490. http://dx.doi.org/10.1371/journal.pone.0009490

Pujalte, M.J., Ortigosa, M., Macián, M.C., & Garay, E. (1999). Aerobic and facultative anaerobic heterotrophic bacteria associated to Mediterranean oysters and seawater. International Microbiology, 2, 259-266.

Reilly, A., & Kaeferstein, F. (1998). Food safety and products from aquaculture. Journal of Applied Microbiology, 85, 249S–257S. http://dx.doi.org/10.1111/j.1365- 2672.1998.tb05305.x

Ringø, E., Strøm, E., & Tabachek, J. (1995). Intestinal microflora of salmonids: a review. Aquaculture Research, 26, 773-789. http://dx.doi.org/10.1111/j.1365- 2109.1995.tb00870.x

Ringø, E., & Birkbeck, T. (1999). Intestinal microflora of fish larvae and fry. Aquaculture Research, 30, 73-93.

Ringø, E., Sperstad, S., Myklebust, R., Refstie, S., & Krogdahl, Å. (2006). Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.): The effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture, 261, 829-841. http://dx.doi.org/10.1016/j.aquaculture.2006.06. 030

Romero, J., Garcia-Varela, M., Laclette, J., & Espejo, R. (2002). Bacterial 16S rRNA gene analysis revealed that bacteria related to Arcobacter spp. constitute an abundant and common component of the oyster microbiota (Tiostrea chilensis). Microbial Ecology, 44, 365-371. http://dx.doi.org/10.1007/s00248-002-1063-7

Romero, J., Gonzalez, N., & Espejo, R.T. (2002). Marine Pseudoalteromonas sp. Composes Most of the Bacterial Population Developed in Oysters (Tiostrea chilensis) Spoiled During Storage. Journal of Food Science, 67, 2300–2303. http://dx.doi.org/10.1111/j.1365- 2621.2002.tb09544.x

Saldanha, A.J. (2004). Java Treeview—extensible visualization of microarray data. Bioinformatics, 20, 3246-3248. http://dx.doi.org/10.1093/bioinformatics/bth349

Sellner, K.G. (1997). Physiology, ecology and toxic properties of marine cyanobacteria blooms. Limnology and Oceanography, 42, 1089-1104.

Tarnecki, A.M., Burgos, F.A., Ray, C.L., & Arias, C.R. (2017). Fish Intestinal Microbiome: Diversity and Symbiosis Unraveled by Metagenomics. Journal of Applied Microbiology. http://dx.doi.org/10.1111/jam.13415

Urbanczyk, H., Ast, C.J., Higgins, M.J., Carson, J., & Dunlap, P.V. (2007). Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. International Journal of Systematic and Evolutionary Microbiology, 57, 2823-2829. http://dx.doi.org/10.1099/ijs.0.65081-0

Wang, Q., Garrity, G.M., Tiedje, J.M., & Cole, J.R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261-5267. http://dx.doi.org/10.1128/AEM.00062-07

Wu, S., Wang, G., Angert, E.R., Wang, W., Li, W., & Zou, H. (2012). Composition, diversity, and origin of the bacterial community in grass carp intestine. PLOS ONE, 7, e30440. http://dx.doi.org/10.1371/journal.pone.0030440

Yoon, J.H., Weiss, N., Kang, K.H., Oh, T.K., & Park, Y.H. (2003). Planococcus maritimus sp. nov., isolated from sea water of a tidal flat in Korea. International Journal of Systematic and Evolutionary Microbiology, 53, 2013-2017. http://dx.doi.org/10.1099/ijs.0.02557-0

Zarkasi, K.Z., Abell, G.C.J., Taylor, R.S., Neuman, C., Hatje, E., Tamplin, M.L., Katouli, M., & Bowman, J.P. (2014). Pyrosequencing-based characterization of gastrointestinal bacteria of Atlantic salmon (Salmo salar L.) within a commercial mariculture system. Journal of Applied Microbiology, 117, 18-27. http://dx.doi.org/10.1111/jam.12514

Zarkasi, K.Z., Taylor, R.S., Abell, G.C.J., Tamplin, M.L., Glencross, B.D., & Bowman, J.P. (2016). Atlantic Salmon (Salmo salar L.) Gastrointestinal Microbial Community Dynamics in Relation to Digesta Properties and Diet. Microbial Ecology, 71, 589–603. http://dx.doi.org/10.1007/s00248-015-0728-y

Zhang, J., Zhang, Y., Liu, S.N., Han, Y., & Zhou, Z.J. (2012). Modelling growth and bacteriocin production by Pediococcus acidilactici PA003 as a function of temperature and pH value. Applied Biochemistry and Biotechnology, 166, 1388-1400. http://dx.doi.org/10.1007/s12010-011-9532-4

Zhao, J.S., Manno, D., & Hawari, J. (2009). Psychrilyobacter atlanticus gen. nov., sp. nov., a marine member of the phylum Fusobacteria that produces H2 and degrades nitramine explosives under low temperature conditions. International Journal of Systematic and Evolutionary Microbiology, 59, 491-497. http://dx.doi.org/10.1099/ijs.0.65263-0
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon
Sayıdaki Diğer Makaleler

First Record of Humpback Dolphins in Mersin Bay, the Eastern Mediterranean, Turkey

Yeliz Doğanyılmaz ÖZBİLGİN, Ebrucan KALECİK, Ali Cemal GÜCÜ

Molecular Characterisation of Microbial Diversity Associated with Oysters within a Commercial Oyster Farm

Kamarul Zaman ZARKASI, Teh Faridah NAZARI

The Optimization of Wide-Type Zebrafish, Danio rerio (Hamilton, 1822) Reproduction in Low Temperatures under Controlled Conditions

Dariusz KUCHARCZYK, Pawel STEPIEN, Joanna NOWOSAD, Krzysztof KUPREN, Katarzyna TARGONSKA, Roman KUJAWA

The Economies of Scale of Turbot Industrial Running Water Aquaculture System in China: A Case from Shandong Province

Pingping CANG, Zhengyong YANG, Yu DUAN

Effects of High Stocking Density on Condition Factor and Profile of Free Thyroxine and Cortisol in Catla catla (Hamilton, 1822) and Labeo rohita (Hamilton, 1822)

Shafaq FATIMA, Shadab IZHAR, Zaeema USMAN, Farzana RASHID, Zakia KANWAL, Ghazala JABEEN, Asma Abdul LATIF

Karyological Analysis of Two Species in the Subfamily Schizothoracinae (Cypriniformes: Cyprinidae) from China, with Notes on Karyotype Evolution in Schizothoracinae

Yinggui DAI, Hufeng HAN

Ichthyoplankton of Inner Part of Izmir Bay, Aegean Sea (2000-2005)

TÜLİN ÇOKER, Bülent CİHANGİR

Effects of Acute and Chronic Air Exposure on Growth and Stress Response of Juvenile Olive Flounder, Paralichthys olivaceus

Han Kyu LIM, Jun Wook HUR

Determination of Hobbyist Preferences for Livebearer Ornamental Fish Attributes by Conjoint Analysis

Mustafa Tolga TOLON

Insulin-Like Androgenic Gland Hormone Gene in the Freshwater Chinese Mitten Crab Eriocheir sinensis:cDNA Cloning, Expression Pattern and Interaction with EsIGFBP7

Kun SONG, Tianshuo XU, Yanan Zang, Ali SERWADDA, Tianhao DAI, Yuanchao MA, Huaishun SHEN