Reducing computational complexity in fingerprint matching

Reducing computational complexity in fingerprint matching

The performance of cross-correlation functions can decrease computational complexity under optimal fingerprint feature selection. In this paper, a technique is proposed to perform alignment of fingerprints followed by their matching in fewer computations. Minutiae points are extracted and alignment is performed on the basis of their spatial locations and orientation fields. Unlike traditional cross-correlation based matching algorithms, ridges are not included in the matching process to avoid redundant computations. However, optimal cross-correlation is chosen by correlating feature vectors accompanying x-y locations of minutiae points and their aligned orientation fields. As a result, matching time is significantly reduced with much improved accuracy

___

  • 1] Maltoni D, Maio D, Jain AK, Prabhakar S. Handbook of fingerprint recognition. USA: Springer Science & Business Media, 2009.
  • [2] Jain AK, Feng J, Nandakumar K. Fingerprint matching. Computer 2010; 43 (2): 36-44. doi: 10.1109/MC.2010.38
  • [3] Zhang D, Liu F, Zhao Q, Lu G, Luo N. Selecting a reference high resolution for fingerprint recognition us- ing minutiae and pores. IEEE Transactions on Instrumentation and Measurement 2011; 60 (3): 863-871. doi:10.1109/TIM.2010.2062610
  • [4] Bae G, Lee H, Son S, Hwang D, Kim J. Secure and robust user authentication using partial fingerprint matching. In: 2018 IEEE International Conference on Consumer Electronics (ICCE). IEEE, Las Vegas, USA; 2018. p. 1-6.
  • [5] Derman E, Keskinoz M. Normalized cross-correlation based global distortion correction in fingerprint image match- ing. In: IEEE 2016 International Conference on Systems, Signals and Image Processing (IWSSIP). Bratislava, Slovakia; 2016. p. 1-4.
  • [6] Werner GA, Hanka L. Tuning an artificial neural network to increase the efficiency of a fingerprint matching algorithm. In: IEEE 2016 14th International Symposium on Applied Machine Intelligence and Informatics (SAMI). Herlany, Slovakia; 2016. p. 105-109.
  • [7] Peralta D, Garc’ıa S, Benitez JM, Herrera F. Minutiae-based fingerprint matching decomposition: methodology for big data frameworks. Information Sciences 2017; 408: 198-212. doi: 10.1016/j.ins.2017.05.001
  • [8] Lee W, Cho S, Choi H, Kim J. Partial fingerprint matching using minutiae and ridge shape features for small fingerprint scanners. Expert Systems with Applications 2017; 87: 183-198. doi: 10.1016/j.eswa.2017.06.019
  • [9] Chen W, Fan W, Xi X, Yang Z, Yang J. A novel fast fingerprint matching method based on feature descriptors. In: 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, Chongqing, China; 2018. p. 2106-2109.
  • [10] Tico M, Kuosmanen P. Fingerprint matching using an orientation-based minutia descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence 2003; 25 (8): 1009-1014. doi: 10.1109/TPAMI.2003.1217604
  • [11] Feng J. Combining minutiae descriptors for fingerprint matching. Pattern Recognition 2008; 41 (1): 342-352. doi: 10.1016/j.patcog.2007.04.016
  • [12] Kovacs-Vajna ZM. A fingerprint verification system based on triangular matching and dynamic time warping. IEEE Transactions on Pattern Analysis and Machine Intelligence 2000; 22 (11): 1266-1276. doi: 10.1109/34.888711
  • [13] Hong L, Wan Y, Jain A. Fingerprint image enhancement: Algorithm and performance evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 1998; 20 (8): 777-789. doi: 10.1109/34.709565
  • [14] Jain AK, Farrokhnia F. Unsupervised texture segmentation using Gabor filters. Pattern Recognition 1991; 24 (12): 1167-1186. doi: 10.1016/0031-3203(91)90143-S
  • [15] Maio D, Maltoni D, Cappelli R, Wayman JL, Jain AK. FVC2002: Second fingerprint verification competition. In: Proceeding of 16th IEEE international conference on Pattern recognition, 2002. Quebec, Canada; 2002. p. 811-814.
  • [16] Xiao Q, Raafat H. Fingerprint image postprocessing: a combined statistical and structural approach. Pattern Recognition 1991; 24 (10): 985-992. doi: 10.1016/0031-3203(91)90095-M
  • [17] Cappelli R, Ferrara M, Maltoni D. Minutia cylinder-code: A new representation and matching technique for fingerprint recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 2010; 32 (12): 2128-2141. doi: 10.1109/TPAMI.2010.52
  • [18] Maio D, Maltoni D, Cappelli R, Wayman JL, Jain AK. FVC2000: Fingerprint verification competition. IEEE Transactions on Pattern Analysis and Machine Intelligence 2002; (3): 402-412. doi: 10.1109/34.990140
  • [19] Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters 2006; 27 (8): 861-874. doi: 10.1016/j.patrec.2005.10.010
  • 20] Cappelli R, Ferrara M, Franco A, Maltoni D. Fingerprint verification competition 2006. Biometric Technology Today 2007; 15 (7-8): 7-9. doi: 10.1016/S0969-4765(07)70140-6
  • [21] Marcialis GL, Lewicke A, Tan B, Coli P, Grimberg D et al. First international fingerprint liveness detection com- petition|LivDet 2009. In: International Conference on Image Analysis and Processing. Springer, Berlin, Heidelberg; 2009. p. 12-23.
  • [22] Liu C, Xia T, Li H. A hierarchical hough transform for fingerprint matching. In: International Conference on Biometric Authentication. Springer, Berlin Heidelberg; 2004. p. 373-379.
  • [23] Shalaby MW, Ahmad MO. A multilevel structural technique for fingerprint representation and matching. Signal Processing 2013; 93 (1): 56-69. doi: 10.1016/j.sigpro.2012.06.021
  • [24] Kumar R, Vikram BD. Fingerprint matching using multi-dimensional ANN. Engineering Applications of Artificial Intelligence 2010; 23 (2): 222-228. doi: 10.1016/j.engappai.2009.11.005
  • [25] De Boer J, Bazen AM, Gerez SH. Indexing fingerprint databases based on multiple features. In: ProRISC the 12th Annual Workshop on Circuits, Systems and Signal Processing; Veldhoven, Netherlands; 2001. p. 300-306.
  • [26] Gao Z, You X, Zhou L, Zeng W. A novel matching technique for fingerprint recognition by graphical structures. In: 2011 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR) IEEE; Guilin, China; 2011. p. 77-82.
  • [27] Lu G, Xu Y. Fast pore matching method based on deterministic annealing algorithm. IET Image Processing 2017; 11 (11): 1034-1040. doi: 10.1049/iet-ipr.2017.0138
  • [28] Feng J, Ouyang Z, Cai A. Fingerprint matching using ridges. Pattern Recognition 2006; 39 (11): 2131-2140. doi: 10.1016/j.patcog.2006.05.001
  • [29] Kaur M, Sofat S. Real-time chaff generation for a biometric fuzzy vault. Turkish Journal of Electrical Engineering & Computer Sciences 2018; 26 (1): 89-100. doi: 10.3906/elk-1610-255
  • [30] Sharma RP, Dey S. Fingerprint liveness detection using local quality features. The Visual Computer 2019; 35 (10): 1393-1410. doi: 10.1007/s00371-018-01618-x
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Adaptive modified artificial bee colony algorithms (AMABC) for optimization of complex systems

Şebnem BORA, Rabia KORKMAZ TAN

Distribution network reconfiguration based on artificial network reconfiguration for variable load profile

Mohamad Sofian Abu TALIP, Hazlie MOKHLIS, Hesham Hanie YOUSSEF, Mohammad Al SAMMAN, Munir Azam MUHAMMAD, Nurulafiqah Nadzirah MANSOR

Optimized idling grid-connection strategy for synchronous condenser

Xiangjian SHI, Heqing HUANG, Teng LIU, Wei MU, Jianfeng ZHAO

Combined morphology and SVM-based fault feature extraction technique for detection and classification of transmission line faults

Godse REVATI, Bhat SUNIL

Exhaustive hard triplet mining loss for Person Re-Identification

Chao XU, Xiang SUN, Ziliang CHEN, Shoubiao TAN

Low-profile folded dipole UHF RFID tag antenna with outer strip lines for metal mounting application

Fuad ERMAN, Effariza HANAFI, Eng-Hock LIM, Wan Amirul WAN MOHD MAHYIDDIN, Sulaiman Wadi HARUN, Mohamad Sofian ABU TALIP, Rawan SOBOH, Hassan UMAIR

A subsynchronous resonance prevention for DFIG-based wind farmsfarms

Davood FATEH, Ali Akbar MOTI BIRJANDI, Josep M. GUERRERO

Comparative study between measured and estimated wind energy yield

Ayman AL-QURAAN, Mohammed AL-MAHMODI, Ashraf RADAIDEH, Hussein M. K. Al-MASRI

Improving the efficiency of DNN hardware accelerator by replacing digital feature extractor with an imprecise neuromorphic hardware

Majid MOHAMMADIRAD, Omid SOJODISHIJANI

mlCoCoA: a machine learning-based congestion control for CoAP

Fatih ABUT, Alper Kamil DEMIR