Finite element modeling of a superconducting fault current limiter

This paper summarizes the work done to show finite element modeling results on a high temperature superconductor fault current limiter (FCL). The paper also gives the small mock-up design of the matrix FCL and its finite element model (FEM). It also discusses the limitations of the FEM and explains how the results from the FEM compare with the experimental data derived for the configuration. A 3-dimensional FEM has been used because of the structure of the real geometry, which does not show any plane or axisymmetric features.

Finite element modeling of a superconducting fault current limiter

This paper summarizes the work done to show finite element modeling results on a high temperature superconductor fault current limiter (FCL). The paper also gives the small mock-up design of the matrix FCL and its finite element model (FEM). It also discusses the limitations of the FEM and explains how the results from the FEM compare with the experimental data derived for the configuration. A 3-dimensional FEM has been used because of the structure of the real geometry, which does not show any plane or axisymmetric features.

___

  • E. Thuries, V.D. Pham, Y. Laumond, T. Verhaege, A. Fevrier, M. Collet, M. Bekhaled, “Towards the supercon- ducting fault current limiter”, IEEE Transactions on Power Delivery, Vol. 6, pp. 801-808, 1991.
  • D. Ito, E.S. Yoneda, K. Tsurunaga, T. Tada, T. Hara, T. Ohkuma, T. Yamamoto, “6.6 kV/1.5 kA-class supercon- ducting fault current limiter development”, IEEE Transactions on Magnetics, Vol. 28, pp. 438-44, 1992.
  • L. Salasoo, A.F. Imece, R.W. Delmerico, R.D. Wyatt, “Comparison of superconducting fault limiter concepts in electric utility applications”, IEEE Transactions on Applied Superconductivity, Vol. 5, pp. 1079-1082, 1995.
  • E. Leung, “Superconducting fault current limiters”, IEEE Power Engineering Review, Vol. 20, pp. 15-18, 2000.
  • L. Kovalsky, X. Yuan, K. Tekletsadik, A. Keri, J. Bock, F. Breuer, “Applications of superconducting fault current limiters in electric power transmission systems”, IEEE Transactions on Applied Superconductivity, Vol. 15, pp. 2130-2133, 2005.
  • K. Tekletsadik, M.P. Saravolac, A. Rowley, “Development of a 7.5 MVA superconducting fault current limiter”, IEEE Transactions on Applied Superconductivity, Vol. 9, pp. 672-675, 1999.
  • S. Elschner, F. Breuer, A. Wolf, M. Noe, L. Cowey, J. Bock, “Characterization of BSCCO 2212 bulk material for resistive current limiters”, IEEE Transactions on Applied Superconductivity, Vol. 11, pp. 2507-2510, 2001.
  • B. Gromoll, G. Ries, W. Schmidt, H.P. Kraemer, B. Seebacher, B. Utz, R. Nies, H.W. Neumueller, E. Baltzer, S. Fischer, B. Heismann, “Resistive fault current limiters with YBCO Şlms - 100 kVA functional model”, IEEE Transactions on Applied Superconductivity, Vol. 12, pp. 656-659, 2002.
  • S. Salon, M.V.K. Chari, Numerical Methods in Electromagnetism, San Diego, Academic Press, 1999.
  • Y.J. Kim, D.K. Park, S.E. Yang, W.C. Kim, M.C. Ahn, Y.S. Yoon, N.Y. Kwon, H. Lee, T.K. Ko, “Analytical design method of high-Tccoated conductor for a resistive superconducting fault current limiter using Şnite element method”, IEEE Transactions on Applied Superconductivity, Vol. 20, pp. 1172-1176, 2010.
  • F. Moriconi, N. Koshnick, F. De La Rosa, A. Singh, “Modeling and test validation of a 15 kV, 24 MVA supercon- ducting fault current limiter”, IEEE Transmission and Distribution Conference and Exposition, pp. 1-6, 2010.
  • E. Vinot, V. Leconte, G. Meunier, P. Tixador, “Circuit coupling method applied to bulk superconductors,” IEEE Transactions on Magnetics, Vol. 38, pp. 3661-3664, 2002.
  • G. Rubinacci, A. Tamburrino, F. Villone, “Three dimensional Şnite elements modeling of superconductors”, IEEE Transactions on Magnetics, Vol. 36, pp. 1276-1279, 2000.
  • J. Rhyner, “Magnetic properties and AC-losses of superconductors with power law current-voltage characteristics”, Physica C: Superconductivity, Vol. 212, pp. 292-300, 1993.