Skewed alpha-stable distributions for modeling and classification of musical instruments

Music information retrieval and particularly musical instrument classification has become a very popular research area for the last few decades. Although in the literature many feature sets have been proposed to represent the musical instrument sounds, there is still need to find a superior feature set to achieve better classification performance. In this paper, we propose to use the parameters of skewed alpha-stable distribution of sub-band wavelet coefficients of musical sounds as features and show the effectiveness of this new feature set for musical instrument classification. We compare the classification performance with the features constructed from the parameters of generalized Gaussian density and some of the state-of-the-art features using support vector machine classifiers.

Skewed alpha-stable distributions for modeling and classification of musical instruments

Music information retrieval and particularly musical instrument classification has become a very popular research area for the last few decades. Although in the literature many feature sets have been proposed to represent the musical instrument sounds, there is still need to find a superior feature set to achieve better classification performance. In this paper, we propose to use the parameters of skewed alpha-stable distribution of sub-band wavelet coefficients of musical sounds as features and show the effectiveness of this new feature set for musical instrument classification. We compare the classification performance with the features constructed from the parameters of generalized Gaussian density and some of the state-of-the-art features using support vector machine classifiers.

___

  • A. Klapuri, M. Davy (Eds.), Signal Processing Methods for Music Transcription, Springer, 2006.
  • S. Essid, G. Richard, B. David, ”Instrument recognition in polyphonic music based on automatic taxonomies”, IEEE Trans. on Audio, Speech, and Language Processing, vol. 14, no. 1, pp. 68-80, 2006.
  • B. Kostek, ”Musical instrument classiŞcation and duet analysis employing music information retrieval techniques”, Proceedings of IEEE, vol. 92, no. 4, pp. 712-729, 2004.
  • P. Herrera-Boyer, G. Peeters, S. Dubnov, ”Automatic classiŞcation of musical instrument sounds”, Journal of New Music Research, vol. 32, no. 1, pp. 3-21, 2003.
  • W. J. Pielemeier, G. H. WakeŞeld, M. H. Simoni, ”Time-frequency analysis of musical signals”, Proc. of IEEE, vol. , no. 9, pp. 1216-1230, 1996.
  • I. Guyon, A. Elisseeff, ”An introduction to variable and feature selection”, Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
  • J. D. Deng, C. Simmermacher, S. CraneŞeld, ”A study on feature analysis for musical instrument classiŞcation”, IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics, vol. 38, no. 2, pp. 429-438, 2008.
  • S. Wegener, M. Haller, J. Burred, T. Sikora, S. Essid, G. Richard, ”On the robustness of audio features for musical instrument classiŞcation”, In: 16thEuropean Signal Processing Conference, Lausanne, Switzerland, 2008.
  • Q. Ding, N. Zhang, ”ClassiŞcation of recorded musical instruments sounds based on neural networks”, In: Proc. of the IEEE Symposium on Computational Intelligence in Image and Signal Processing, Honolulu, Hawaii, USA, pp. 162, 2007.
  • J. Eggink, G. J. Brown, ”Instrument recognition in accompanied sonatas and concertos”, In: Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing, Montreal, Canada, vol. 4, pp. 217-220, 2004.
  • J. R. De Gruijl, M. A. Wiering, ”Musical instrument classiŞcation using democratic liquid state machines”, In: Y. Saeys, E. Tsiporkova, B. D. Baets, Y. V. de Peer (Eds.), 15thBelgian-Dutch Conference on Machine Learning, pp. 40, 2006.
  • J. Marques, P. J. Moreno, ”A study of musical instrument classiŞcation using Gaussian mixture models and support vector machines”. Technical Report Series CRL 99/4, Compaq Corporation, Cambridge Research Laboratory, 1999.
  • A. Wieczorkowska, A. Kubik-Komar, ”Application of analysis of variance and post hoc comparisons to studying the discriminative power of sound parameters in distinguishing between musical instruments”, Journal of Intelligent Information Systems, vol.37, no. 3 pp. 293-314. doi:10.1007/s10844-010-0140-5, 2011.
  • A. Wieczorkowska, ”Musical sound classiŞcation based on wavelet analysis”, Fundamenta Informaticae, vol. 47, no. 2, pp. 175-188, 2001.
  • M. N. Do, M. Vetterli, ”Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance”, IEEE Trans. on Image Processing, vol. 11, pp. 146-158, 2002.
  • T. Li, M. Ogihara, ”Toward intelligent music information retrieval”, IEEE Trans. on Multimedia, vol. 8, no. 3, pp. 574, 2006.
  • C. Tzagkarakis, A. Mouchtaris, P. Tsakalides, ”Musical genre classiŞcation via generalized Gaussian and alpha-stable modeling”, In: IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France, vol. , pp. 217-220, 2006.
  • M. I. Taroudakis, G. Tzagkarakis, P. Tsakalides, ”ClassiŞcation of shallow-water acoustic signals via alpha-stable modeling of the one-dimensional wavelet coefficients”, Journal of Acoustical Society of America, vol. 119, no. 3, pp. 1405, 2006.
  • M. E. ¨Ozbek, F. A. Savacı, ”Music instrument classiŞcation using Generalized Gaussian density modeling”, In: IEEE 15thSignal Processing and Communications Applications Conference, Eski¸sehir, Turkey, 2007.
  • G. Samorodnitsky, M. S. Taqqu, Stable Non-Gaussian Random Processes: Stochastic models with inŞnite variance, Chapman and Hall/CRC, 2000.
  • P. Kidmose, ”Alpha-stable distributions in signal processing of audio signals”, In: Proc. of the 41stConference on Simulation and Modelling, Scandinavian Simulation Society, pp. 87-94, 2000.
  • E. E. Kuruo˘glu, J. Zerubia, ”Skewed α -stable distributions for modelling textures”, Pattern Recognition Letters, vol. 24, pp. 339-348, 2003.
  • D. Salas-Gonzalez, E. E. Kuruo˘glu, D. P. Ruiz, ”A heavy-tailed empirical Bayes method for replicated microarray data”, Computational Statistics and Data Analysis, vol. 53, pp. 1535-1546, 2009.
  • E. E. Kuruo˘glu, ”Density parameter estimation of skewed α -stable distributions”, IEEE Trans. on Signal Processing, vol. 49, no. 10, pp. 2192-2201, 2001.
  • S. G. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way (3rd Edition), Academic Press, 2009.
  • M. Vetterli, J. Kovaˇcevi´c, Wavelets and Subband Coding, Prentice Hall, 1995.
  • L. Fritts, ”The University of Iowa Electronic Music Studios Musical Instrument Samples”, http://theremin.music.uiowa.edu, 1997.
  • M. E. ¨Ozbek, C. Delpha, P. Duhamel, ”Musical note and instrument classiŞcation with likelihood-frequency-time analysis and support vector machines”, In: 15thEuropean Signal Processing Conference, Poznan, Poland, pp. 945, 2007.
  • B. Kostek, Perception-Based Data Processing in Acoustics, Springer, 2005.
  • O. Lartillot, P. Toiviainen, ”A MATLAB toolbox for musical feature extraction from audio”, In: Proc. of the 10th International Conference on Digital Audio Effects, Bordeaux, France, pp. 237–244, 2007.
  • M. Casey, ”MPEG- 7 sound-recognition tools”, IEEE Trans. on Circuits and Systems for Video Technology, vol. 11, no. 6, pp. 737-747, 2001.
  • ISO/IEC Working Group, ”MPEG- 7 overview”, http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg- htm, 2004.
  • V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.
  • B. Sch¨olkopf, A. J. Smola, Learning with Kernels, MIT Press, 2002.