New insights on Messinian evaporites based on field and seismic interpretations in the Neogene Antalya Basin, SW Turkey

New insights on Messinian evaporites based on field and seismic interpretations in the Neogene Antalya Basin, SW Turkey

In situ/primary Messinian upper evaporite is absent in the onland (onshore) sections of the Aksu and Manavgat subbasins(Antalya Basin), where gypsum blocks, gypsum conglomerate, and laminated gypsum beds mixed with siliciclastic materials are collectively present in the uppermost Messinian-?lowermost Pliocene succession. The metric-size resedimented evaporite blocks, mainlyderived from selenite-dominated marginal/upper evaporite, were deposited time-equivalent to the lower-middle parts of the reefalGebiz limestone in the Aksu subbasin. Resedimented bedded evaporites were accumulated after siliciclastic-dominated (fluvio-deltaic)sedimentation of the Taşlık Formation in the Manavgat subbasin (nearby Antalya city). Some bedded/?resedimented gypsums weredefined within the Gebiz limestone and the Eskiköy Formation, as observed in the logs of the Aksu-1, Manavgat-1, and Manavgat-2wells. Effects of the Messinian salinity crisis are seen on the seismic boundary of the Messinian erosional surface in the Aksu subbasinresting directly on the Karpuzçay Formation and in the lower and middle parts of the fluvio-deltaic Eskiköy Formation and reefal Gebizlimestone. As for the Manavgat subbasin, Manavgat-1 and -2 well logs indicate the existence of bedded/?resedimented evaporites in theTaşlık and Eskiköy Formations, which is supported by the seismic sections. Additionally, onshore and offshore seismic sections indicatethat the upper evaporite layer could be traceable both in onshore and offshore areas. The relationship between evaporite and nonevaporite units is explained by the Aksu phase, which caused compressional deformation leading to significant uplift in the region around theGebiz High. This uplift is also involved in relative sea-level drop, which resulted in alternating deposition between siliciclastic (Eskiköyand Taşlık Formations), resedimented-bedded gypsum, and transgressive shallow marine reefal Gebiz limestone.

___

  • Akay E, Uysal Ş (1985). Antalya Neojen Havzasının stratigrafisi. Bulletin of the Geological Society of Turkey 28: 105-119 (in Turkish).
  • Aksu AE, Hall J, Calon TJ, Barnes MC, Güneş P et al. (2018). Messinian evaporites across the Anaximender Mountains, Sırrı Erinç Plateau and Rhodes and Finike basins, eastern Mediterranean Sea. Marine Geology 395: 48-64.
  • Aksu AE, Hall J, Yaltırak C (2005). Miocene to Recent tectonic evolution of the eastern Mediterranean: new pieces of the old Mediterranean puzzle. Marine Geology 221: 1-13.
  • Aksu AE, Hall J, Yaltırak C (2009). Miocene-Recent evolution of Anaximander Mountains and Finike Basin at the junction of Hellenic and Cyprus Arcs, eastern Mediterranean. Marine Geology 258: 24-47.
  • Albora AM, Sayin N, Ucan ON (2006). Evaluation of tectonic structure of İskenderun Basin (Turkey) using steerable filters. Marine Geophysical Research 27 (4): 225-239.
  • Bizon G, Biju-Duval B, Letouzay J, Monod O, Poisson A et al. (1974). Nouvelles precisions stratigraphiques concernant les bassins tertiaries du sud de laTurquie (Antalya, Mut, Adana). Revue de l’Institut Français du Pétrole Paris 29: 305-320 (in French).
  • Boeger H, Dermitzakis M (1987). Neogene palaeogeography in the central Aegean region. Annals of the Hungarian Geological Institute 70: 217-220.
  • Boulton SJ, Robertson AHF (2007a). The Miocene of the Hatay area, S Turkey: transition from the Arabian passive margin to an underfilled foreland basin related to closure of the Southern Neotethys Ocean. Sedimentary Geology 198: 93-124.
  • Boulton SJ, Robertson AHF, Ellam RM, Şafak Ü, Ünlügenç UC (2007b). Strontium isotopes and micropalaeontological dating used to redefine the stratigraphy of the Neotectonic Hatay Graben, southern Turkey. Turkish Journal of Earth Sciences 16: 141-180.
  • Boulton SJ, Robertson AHF, Unlügenç ÜC (2006). Tectonic and sedimentary evolution of the Cenozoic Hatay Graben, Southern Turkey: a two-phase, foreland basin then transtensional basin model. In: Robertson AHF, Mountrakis D (editors). Tectonic Evolution of the Eastern Mediterranean. London, UK: Geological Society of London Special Publications, pp. 613- 634.
  • Boulton SJ, Smart CW, Consolaro C, Snider A (2016). The MiocenePliocene boundary and the Messinian Salinity Crisis in the easternmost Mediterranean: Insights from the Hatay Graben (Southern Turkey). Sedimentary Geology 332: 51-67.
  • Cameselle AL, Urgeles R (2017). Large-scale margin collapse during Messinian early sea-level drawdown: the SW Valencia trough, NW Mediterranean. Basin Research 29: 576- 595.
  • Castellanos DG, Estrada F, Jimenez-Munt I, Gorini C, Fernandez M et al. (2009). Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 462 (7274): 778-781.
  • Christie-Blick N (1991). Onlap, offlap, and the origin of unconformitybounded depositional sequences. Marine Geology 97: 35-56.
  • Chumakov IS (1973). Pliocene and Pleistocene Deposits of the Nile Valley in Nubia and Upper Egypt. Initial Reports of the Deep Sea Drilling Project, Vol. 13. Washington, DC, USA: US Government Printing Office.
  • Çiner A, Karabıyıkoğlu M, Monod O, Deynoux M, Tuzcu S (2008). Late Cenozoic sedimentary evolution of the Antalya basin, southern Turkey. Turkish Journal of Earth Sciences, 17: 1-41.
  • Clauzon G (1978). The Messinian Var canyon (Provence, Southern France) – Paleogeographic implications. Marine Geology 27: 231-246.
  • Collins AS, Robertson AHF (1998). Processes of late Cretaceous to late Miocene episodic thrust-sheet translation in the Lycian Taurides, SW Turkey. Journal of the Geological Society London 155: 759-772.
  • Cornée JJ, Ferrandini M, Saint Martin JP, Moullade M, RibaudLaurenti A et al. (2006). The late Messinian erosional surface and the subsequent reflooding in the Mediterranean: new insights from the Melilla-Nador basin (Morocco). Palaeogeography, Palaeoclimatology, Palaeoecology 230: 129-154.
  • Cosgrove JW (2015). The association of folds and fractures and the link between folding, fracturing and fluid flow during the evolution of a fold-thrust belt: a brief review. Geological Society of London Special Publications 421: 41-68.
  • Dabrio CJ (1990). Fan-delta facies associations in the late Neogene and Quarternary basins of southeastern Spain. Special Publications of the International Association of Sedimentology 10: 91-111.
  • Dalla S, Rossi M, Orlando M, Visentin C, Gelati R et al. (1992). Late Eocene-Tortonian tectono-sedimentary evolution in the western part of the Padan Basin (northern Italy). Paleontologia y Evolucion 24-25: 341-362.
  • Darbaş G, Nazik A (2010). Micropaleontology and paleoecology of the Neogene sediments in the Adana Basin (South of Turkey). Journal of Asian Earth Sciences 39: 136-147. doi: 10.1016/j. jseaes.2010.03.002
  • Deynoux M, Çiner A, Monod O, Karabıyıkoğlu M, Manatschal G et al. (2005). Facies architecture and depositional evolution of alluvial fan to fan-delta complexes in the tectonically active Miocene Köprüçay Basin, Isparta Angle, Turkey. Sedimentary Geology 173: (14): 315-343. doi: 10.1016/j.sedgeo.2003.12.013
  • Dunbar CO, Rodgers J (1957). Principles of Stratigraphy, International Edition. London, UK: John Wiley and Sons.
  • Dündar S, Varol B (2014). Antalya-Manavgat havzasında Gebiz kireçtaşı ve evaporitlerin ortamsal ilişkisi. 67. Türkiye Jeoloji Kurultayı 758-759 (in Turkish).
  • Esteban M (1996). An overview of Miocene reefs from Mediterranean areas; general trends and facies models. Concepts in Sedimentology and Paleontology 5: 3-53.
  • Flecker R, Ellam RM, Müller C, Poisson A, Robertson AHF et al. (1998). Application of Sr isotope stratigraphy and sedimentary analysis to the origin and evolution of the Neogene basins in the Isparta Angle, southern Turkey. Tectonophysics 298: 83- 101.
  • Flecker R, Robertson AHF, Poisson A, Muller C (1995). Facies and tectonic significance of two contrasting Miocene basins in south coastal Turkey. Terra Nova 7: 221-232.
  • Follows EJ (1992). Patterns of reef sedimentation and diagenesis in the Miocene of Cyprus. Sedimentary Geology 79: 225-253.
  • Glover CP, Robertson AHF (1998a). Role of regional extension and uplift in the Plio-Pleistocene evolution of the Aksu Basin, SW Turkey. Journal of the Geological Society 155: 365-387.
  • Glover C, Robertson AHF (1998b). Neotectonic intersection of the Aegean and Cyprus tectonic arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. Tectonophysics 298: 103-132.
  • Güneş P, Aksu AE, Hall J (2018a). Internal seismic stratigraphy of the Messinian evaporites across the northern sector of the Mediterranean Sea. Marine Geology 91: 297-320.
  • Güneş P, Aksu AE, Hall J (2018b). Tectonic and sedimentary conditions necessary for the deposition of the Messinian evaporite successions in the eastern Mediterranean: a simple 2D model. Marine and Petroleum Geology 96: 51-70.
  • Güneş P, Aksu AE, Hall J (2018c). Structural framework and deformation history of the western Cyprus Arc. Tectonophysics 744: 438-457.
  • Hall J, Aksu AE, King H, Gogacz A, Yaltırak C et al. 2014. MioceneRecent evolution of the western Antalya Basin and its linkage with the Isparta Angle, eastern Mediterranean. Marine Geology 349: 1-23.
  • Hall J, Aksu AE, Yaltırak C, Winsor JD (2009). Structural architecture of the Rhodes Basin: a deep depocentre that evolved since the Pliocene at the junction of Hellenic and Cyprus Arcs, eastern Mediterranean. Marine Geology 258: 1-23.
  • Hall J, Calon, TJ, Aksu AE, Meade SR (2005). Structural evolution of the Latakia Ridge and Cyprus Basin at the front of the Cyprus Arc, Eastern Mediterranean Sea. Marine Geology 221 (1-4): 261-297. doi: https://doi.org/10.1016/j.margeo.2005.03.007
  • Hardenberg MF, Robertson AHF (2007). Sedimentology of the NW margin of the Arabian plate and the SW-NE trending Nahr El-Kabir half-graben in northern Syria during the latest Cretaceous and Cenozoic. Sedimentary Geology 201: 231-266.
  • Hardenberg MF, Robertson AHF (2013). Role of the PalaeogeneRecent sinistral El-Kabir Lineament and the associated transtensional Neogene-Recent El-Kabir Basin (northern Syria) in distributed deformation between the African and Eurasian plates. Geological Society of London Special Publications 372 (1): 447-471.
  • Hardenberg Boulton SJ, Smart CW, Consolaro C, Snider A (2016). The Miocene-Pliocene boundary and the Messinian Salinity Crisis in the easternmost Mediterranean: Insights from the Hatay Graben (Southern Turkey). Sedimentary Geology 332: 51-67.
  • Hsü KJ, Montadert L, Bernoulli D, Cita MB, Erickson A et al. (1977). History of the Mediterranean salinity crisis. Nature 267: 399- 403.
  • Iaccarino S, Castradoti D, Cita MB, Di Stafano E, Gaboardi S et al. (1999a). The Miocene-Pliocene boundary and the significance of the earliest Pliocene flooding in the Mediterranean. Memoire della Società Geologica Italiana 54: 109-131.
  • Ilgar A, Nemec W, Hakyemez A, Karakuş E (2013). Messinian forced regressions in the Adana Basin: a near-coincidence of tectonic and eustatic forcing. Turkish Journal of Earth Sciences 22: 864- 889.
  • İşler FI, Aksu AE, Hall J, Calon TJ, Yaşar D (2005). Neogene development of the Antalya Basin, Eastern Mediterranean: an active forearc basin adjacent to an arc junction. Marine Geology 221: 299-330.
  • Karabıyıkoğlu M, Çiner A, Monod O, Deynoux M, Tuzcu S et al. (2000). Tectono-sedimentary evolution of the Miocene Manavgat Basin, Western Taurids, Turkey. Geological Society of London Special Publication 173: 271-294. doi: 10.1144/GSL. SP.2000.173.01.14
  • Karabıyıkoğlu M, Tuzcu S, Çiner A, Deynoux M, Örçen S et al. (2005). Facies and environmental setting of the Miocene coral reefs in the Late-Orogenic fill of the Antalya Basin, Western Taurids, Turkey. Sedimentary Geology 173 (1-4): 345-371.
  • Kissel C, Averbuch O, Frizon De Lamote D, Monod O et al. (1993). First Paleomagnetic evidence for a post Eocene clockwise rotation of the western Taurides thrust belt east of the Isparta re-entrant (southern Turkey). Earth and Planetary Science Letters 117 (1-2): 1-14.
  • Kosun E (2012). Facies characteristics and depositional environments of Quaternary tufa deposits, Antalya, SW Turkey. Carbonates and Evaporites 27 (3-4): 269-289.
  • Kosun E, Poisson A, Ciner A, Wernli R, Monod O (2009). Syntectonic sedimentary evolution of the Miocene Catallar Basin, southwestern Turkey. Journal of Asian Earth Sciences 34 (3): 466-479.
  • Krijgsman W, Leewis ME, Garcés M, Kouwenhoven TJ, Kuiper KF et al. (2006). Tectonic control for evaporite formation in the Eastern Betics (Tortonian; Spain). Sedimentary Geology 188- 189: 155-170.
  • Lofi J, Déverchère J, Gaullier V, Gillet H, Gorini C et al. (2011a). Atlas of the Messinian Salinity Crisis: Seismic Markers in the Mediterranean and Black Seas. Paris, France: Commission de la Carte Géologique du Monde.
  • Lofi J, Sage F, Déverchère J, Loncke L, Maillard A et al. (2011b). Refining our knowledge of the Messinian salinity crisis records in the offshore domain through multi-site seismic analysis. Miocene-Pliocene geodynamics and paleogeography in the Mediterranean region: eustasy-tectonics interference. Bulletin de la Société Géologique de France 182: 163-180.
  • Lonergan L, Schreiber BC (1993). Proximal deposits at a faultcontrolled basin margin, Upper Miocene, SE Spain. Journal of the Geological Society London 150: 719-727.
  • Lymer G, Lofi J, Gaullier V, Maillard A, Thinon I et al. (2018a). The Western Tyrrhenian Sea revisited: new evidence for a rifted basin during the Messinian Salinity Crisis. Marine Geology 398: 1-21.
  • Lymer G, Vendeville BC, Gaullier V, Chanier F, Gaillard M (2018b). Using salt tectonic structures as proxies to reveal post-rift crustal tectonics: the example of the Eastern Sardinian margin (Western Tyrrhenian Sea). Marine and Petroleum Geology 96: 214-231.
  • Maillard A, Gorini C, Mauffret A, Sage F, Lofi J et al. (2006). Offshore evidence of polyphase erosion in the Valencia Basin (Northwestern Mediterranean): scenario for the Messinian Salinity Crisis. Sedimentary Geology 188-189: 69-91.
  • Manzi V, Lugli S, Lucchi FR, Roveri M (2005). Deep-water clastic evaporites deposition in the Messinian Adriatic foredeep (northern Apennines, Italy): did the Mediterranean ever dry out? Sedimentology 52: 875-902.
  • Manzi V, Lugli S, Roveri M, Francesco Dela Pierre F, Gennari R et al. (2016). The Messinian salinity crisis in Cyprus: a further step towards a new stratigraphic framework for Eastern Mediterranean. Basin Research 28: 207-236.
  • Mascle G, Mascle J (2019). The Messinian salinity legacy: 50 years later. Mediterranean Geoscience Reviews (in press). doi: 10.1007/s42990-019-0002-5
  • Matano F, Barbieri M, Di Nocera S, Torre M (2005). Stratigraphy and strontium geochemistry of Messinian evaporite-bearing successions of the southern Apennines foredeep, Italy: implications for the Mediterranean “salinity crisis” and regional palaeogeography. Palaeogeography, Palaeoclimatology, Palaeoecology 217 (1-2): 87-114.
  • Micallef A, Camerlenghi A, Castellanos DG, Otero DC, Gutscher MA et al. (2018). Evidence of the Zanclean megaflood in the eastern Mediterranean Basin. Scientific Reports 8 (1): 1078.
  • Molenaar N (2007). Messinian climate change and erosional destruction of the central European Alps: Comment and Reply: Comment. Geology 35 (1): e131. doi: 10.1130/G23926Y.1
  • Netzeband GL, Hübscher CP, Gajewski D (2006). The structural evolution of the Messinian evaporites in the Levantine Basin. Marine Geology 230: 249-273.
  • Ocean Drilling Program (1995). Leg161 Mediterranean Sea II – The Western Mediterranean Sites 974–979. College Station, TX, USA: Ocean Drilling Program.
  • Özgüner MA, Varol B (2009). The genesis, mineralization, and stratigraphic significance of phosphatic/glauconitic condensed limestone unit in the Manavgat Basin, SW Turkey. Sedimentary Geology 221 (1): 40-56.
  • Poisson A, Akay E, Cravatte J, Müller C, Uysal Ş (1983). Donnees nouvelles sur la chronologie de mise en place des nappes d’Antalya (Taurides occidentales, Turquie). Comptes Rendus des Seances de l’Academie des Sciences Paris 296: 923-925 (in French).
  • Poisson A, Orszag-Sperber F, Kosun E, Basetti MA, Muller C et al. (2011). The late Cenozoic evolution of the Aksu basin (Isparta angle; SW Turkey). New insights. Bulletin de la Société Géologique de France 182 (2): 133-148.
  • Pomerol C (1989). Stratigraphy of the Palaeogene: hiatuses and transitions. Proceedings of the Geologists’ Association 100 (3): 313-324.
  • Robertson AHF, Eaton S, Follows EJ, Payne AS (1995). Depositional processes and basin analysis of Messinian evaporites in Cyprus. Terra Nova 7: 233-253.
  • Roveri M, Bassetti MA, Ricci Lucchi F (2001). The Mediterranean Messinian salinity crisis: an Apennine foredeep perspective. Sedimentary Geology 140: 201-214.
  • Roveri M, Flecker C, Krijgsman W, Lofi J, Lugli S et al. (2014a). The Messinian Salinity Crisis: past and future of a great challenge for marine sciences. Marine Geology 352: 25-58.
  • Roveri M, Lugli S, Manzi V, Gennari R, Schreiber BC (2014b). Highresolution strontium isotope stratigraphy of the Messinian deep Mediterranean basins: implications for marginal to central basins correlation. Marine Geology 349: 113-125.
  • Roveri M, Lugli S, Manzi V, Schreiber BC (2008). The Messinian Sicilian stratigraphy revisited: new insights for the Messinian salinity crisis: Terra Nova 20: 483-488.
  • Roveri M, Manzi V (2006). The Messinian salinity crisis: looking for a new paradigm? Palaeogeography, Palaeoclimatology, Palaeoecology 238: 386-398.
  • Ryan WBF, Hsü KJ, Cita MB, Dumitrica P, Llort J et al. (1973). Annotated Record of the Detailed Examination of Mn Deposits from DSDP Hole 134E, Leg 13 (Core 126-2). Initial Reports of the Deep Sea Drilling Project (DSDP). Washington, DC, USA: US Government Printing Office.
  • Schreiber BC, Friedman GM, Decima A, Schreiber E (1976). Depositional environments of Upper Miocene (Messinian) evaporite deposits of the Sicilian Basin. Sedimentology 23: 729-760.
  • Şenel M, Dalkılıç H, Gedik İ, Serdaroğlu M, Bölükbaşı F et al. (1992). Geology of area between Eğridir-Yenişar Bademli, Gebiz and Geriş-Köprülü (Isparta-Antalya). MTA Derleme Rapor No. 9390. Ankara, Turkey: MTA.
  • Stefano L, Manzi V, Roveri M, Schreiber BC (2010). The Primary Lower Gypsum in the Mediterranean: A new facies interpretation for the first stage of the Messinian salinity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology 297 (1): 83-99.
  • Steininger FF, Bernor RL, Fahlbusch V (1990). European Neogene marine/continental chronologic correlations. In: Lindsay EH, Fahlbusch V, Mein P (editors). European Neogene Mammal Chronology. New York, NY, USA: Plenum Press, pp. 155-285.
  • Taviani M, Rossi S (1989). Salt-related deformation in the deep Antalya Basin: preliminary results of the Mac Gan cruise. Marine Geology 87: 5-13.
  • Tekin E, Varol B, Ayyıldız T (2010). Sedimentology and paleoenvironmental evolution of Messinian evaporites in the Iskenderun-Hatay basin complex, Southern Turkey. Sedimentary Geology 229: 282-298.
  • Üner S, Dirik, K, Çiner A (2011). Kargı Yelpaze Deltası’nın (Aksu Havzası, Antalya) Geç Miyosen Evrimi 32 (2): 121-138 (in Turkish).
  • Üner S, Özsayın E, Dirik RK, Çiner A, Karabıyıkoğlu M (2018). Reconstructing the sedimentary evolution of Miocene Aksu Basin based on fan delta development (eastern MediterraneanTurkey). Turkish Journal of Earth Sciences 27: 32-48. doi: 10.3906/yer-1705-21
  • Weijermars R, Roep TB, Van den Eeckhout B, Postma G, Kleverlaan K (1985). Uplift history of a Betic fold nappe inferred from Neogene-Quarternary sedimentation and tectonics in the Sierra Alhalmilla, Almeria, Sorbas and Tabemas Basins of the Betic Cordillera, SE Spain. Geologie en Mijnbouw 64: 397-411.
  • Yagmurlu F, Savascin Y, Ergin M (1996). Relation of alkaline volcanism and active tectonism within the evolution of the Isparta Angle, SW Turkey. Journal of Geology 105: 717-728.
  • Yetis C, Kelling G, Gökcen SL, Baroz F (1995). A revised stratigraphic framework for later Cenozoic sequences in the northeast Mediterranean region. International Journal of Earth Sciences 84: 794-812.
  • Warren J (2018). Well (Wireline) Log Interpretation of Evaporites: An Overview. Melbourne, Australia: Saltwork Consultants.