The mineralogical and geochemical composition of Holocene sediments from Lake Hazar, Elazığ, Eastern Turkey: implications for weathering, paleoclimate, redox conditions, provenance, and tectonic setting

The mineralogical and geochemical composition of Holocene sediments from Lake Hazar, Elazığ, Eastern Turkey: implications for weathering, paleoclimate, redox conditions, provenance, and tectonic setting

Mineralogical and geochemical analyses of samples collected from piston core HZ11-P01 at the western margin of Lake Hazar were studied to determine the provenance and weathering conditions on the source area together with tectonic setting of the source rocks, paleoclimate of the region, and paleo-redox conditions of the lake sediments. Nonclay minerals in the sediment core are represented by feldspar, quartz, dolomite, and calcite. The clay mineral assemblage consists of smectite/chlorite mixed-layer clay, chlorite, and illite. Most major, trace, and rare earth element contents of the lake samples are generally similar to those of the catchment area.Chondrite-normalized rare earth element patterns of the lake samples are characterized by enrichment of light rare earth elements, a relatively flat heavy rare earth element pattern, and no Eu negative anomaly. The chemical index of alteration and index of compositional variability of the core sediment suggested that the intensity of weathering in the source area was low to moderate. The paleoclimatic indicator (C-values) showed that a paleoclimate changing from semiarid to semimoist prevailed during the last ~2 ka BP. Authigenic Uand element ratios such as Th/U, Ni/Co, Cu/Zn, V/Cr, Eu/Eu*, and Ce/Ce* indicate that the lake sediments were deposited under oxic conditions. La/Sc, Co/Th, Cr/Th, Zr/Sc, and Th/Sc element ratios in the core sediments are consistent with values of sediments derived from mainly mafic and intermediate source rocks. According to discriminant-function diagrams, lake samples are plotted within the arc setting and arc-continent collision, which is in accordance with the geology of the study area.

___

  • Akkoca DB, Işık Ü (2018). Geochemistry of Paleozoic Dadaş Shales from the foreland of Southeastern Turkey, Bismil, Diyarbakır. Periodico di Mineralogia 87: 207-225.
  • Akkoca DB, Kürüm S, Bakır Z (2018). Mineralogy and geochemical characteristics of Elazığ Magmatics around Yemişlik (East of Elazığ). Science and Engineering Journal of Firat University 30 (2): 87-102.
  • Aksoy E, İnceöz M, Koçyigit A (2007). Lake Hazar Basin: a negative flower structure on the East Anatolian fault system (EAFS), SE Turkey. Turkish Journal of Earth Sciences 16: 319-338.
  • Alizai A, Hillier S, Clift PD, Giosan L, Hurst A et al. (2012). Clay mineral variations in Holocene terrestrial sediments from the Indus Basin. Quaternary Research 77: 368-381.
  • Alt JC, Honnorez J, Laverne C, Emmermann R (1986). Hydrothermal alteration of a 1 km section through the upper oceanic crust, deep sea drilling project hole 504B: mineralogy, chemistry, and evolution of seawater-basalt interactions. Journal of Geophysical Research 91 (10): 309-335.
  • Armstrong-Altrin JS (2015). Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review 57: 1446-1461.
  • Armstrong-Altrin JS, Lee YI, Kasper-Zubillaga JJ, Carranza-Edwards A (2012). Geochemistry of beach sands along the western Gulf of Mexico, Mexico: implication for provenance. Chemie der Erde-Geochemistry 72 (4): 345-362.
  • Armstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004). Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research 74: 285-297.
  • Armstrong-Altrin JS, Nagarajan R, Madhavaraju J, Rosalez-Hoz L, Lee YI et al. (2013). Geochemistry of the Jurassic and upper Cretaceous shales from the Molango Region, Hidalgo, Eastern Mexico: implications of source-area weathering, provenance, and tectonic setting. Comptes Rendus Geoscience 345: 185- 202.
  • Bhatia MR, Crook K (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92: 181- 193.
  • Biltekin D, Eriş KK, Çağatay MN, Akçer Ön S, Akkoca Bal D (2018). Late Pleistocene-Holocene environmental change in eastern Turkey: multi-proxy palaeoecological data of vegetation and lake-catchment changes. Journal of Quaternary Science 33 (5): 575-585.
  • Bingöl AF (1986). Petrographic and petrological characteristics of intrusive rocks of Guleman ophiolite (Eastern Taurus-Turkey). Geosound 13 (4): 41-57.
  • Bock B, McLennan SM, Hanson GN (1998). Geochemistry and provenance of the Middle Ordovician Ostin Glen Member (Normanskill Formation) and the Taconian orogeny in New England. Sedimentology 45: 635-655.
  • Bockheim J, Walker DA, Everett LR, Nelson FE, Shiklomanov N (1998). Soils and cryoturbation in moist nonacidic and acidic tundra in the Kuparuk River Basin, Arctic Alaska, U.S.A. Arctic and Alpine Research 30: 166-174.
  • Bozkaya Ö, Yalçın H, Dündar MK (2006). Relationships between diagenesis/metamorphism and geotectonic setting in the rocks of Maden Group (Malatya-Pütürge). Bulletin of Faculty of Engineering of Cumhuriyet University, Serie A – Earth Sciences 23: 1-24 (in Turkish).
  • Brindley GW (1980). Chemical compositions of berthierines. A review. Clays and Clay Minerals 30: 153-155.
  • Çelik H (2003). Stratigraphic and tectonic features of vicinity of Mastar Mountain (SE of Elazığ). PhD, Firat University, Elazığ, Turkey (in Turkish).
  • Çetin H, Güneyli H, Mayer L (2003). Palaeoseismology of the PaluLake Hazar segment of the East Anatolian Fault Zone, Turkey. Tectonophysics 374: 163-197.
  • Chamley H (1989). Clay Sedimentology. Berlin, Germany: Springer Verlag.
  • Condie KC, Marais DJD, Abbott D (2001). Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates. Precambrian Research 106: 239-260.
  • Coppin F, Berger G, Bauer A, Castet S, Loubet M (2002). Sorption of lanthanides on smectite and kaolinite. Chemical Geology 182: 57-68.
  • Cox R, Lowe DR, Cullers R (1995). A conceptual review of regionalscale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sediment cover. Journal of Sedimentary Research 1: 1-12.
  • Craigie N (2018). Principles of Elemental Chemostratigraphy. Cham, Switzerland: Springer International Publishing AG.
  • Cullers RL (1994). The controls on major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimicia et Cosmochimicia Acta 58: 4955-4972.
  • Cullers RL (1995). The controls on the major and trace element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountain region, Colorado, U.S.A. Chemical Geology 123: 107-131.
  • Cullers RL (2002). The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51: 181-203.
  • Cullers RL, Basu A, Suttner L (1988). Geochemical signature of provenance in sand - size material in soils and river sediments near the Tobacco Root batholith, Montana, USA. Chemical Geology 70: 335-348.
  • Cullers RL, Berendsen P (1998). The provenance and chemical variation of sandstones associated with the Mid-Continent Rift system, USA. European Journal of Mineralogy 10: 987-1002.
  • Cullers RL, Graf J (1983). Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rocks, ore petrogenesis. In: Henderson P (editor). Rare-Earth Geochemistry. Amsterdam, the Netherlands: Elsevier, pp. 275- 312.
  • Cullers RL, Podkovyrov VN (2000). Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Research 104: 77-93.
  • Dabard MP (1990). Lower Broverian formations (Upper Proterozoic) of the Armorican Massif (France): geodynamic evolution of source areas revealed by sandstone petrography and geochemistry. Sedimentary Geology 69: 45-58.
  • Daş B (2016). Clay mineralogy and geochemical properties of marine sedimentary and volcanosedimentary rocks at the vicinity of Hatunköy-Plajköy (southeast of Elazığ). MSc thesis, Firat University, Elazığ, Turkey (in Turkish).
  • Descourvieres C, Douglas G, Leyland L, Hartog N, Prommer H (2011). Geochemical reconstruction of the provenance, weathering and deposition of detrital-dominated sediments in the Perth Basin: the Cretaceous Leederville Formation, southwest Australia. Sedimentary Geology 236: 62-76.
  • Dill H (1986). Metallogenesis of Early Paleozoic graptolite shales from the Graefenthal Horst northern Bavaria-Federal Republic of Germany. Economic Geology 81: 889-903.
  • Dix G (2006). Origin of anhedral Sr‐rich calcite in deep‐water mixed sediment, north‐east Australia, Sedimentology 42 (5): 711-724.
  • Dönmez C (2006). Geology, petrography and geochemistry of the Elazığ Magmatics outcropping between Soğanlı-Uyandık (Elazığ). MSc, Çukurova University, Adana, Turkey (in Turkish).
  • Dypvik H (1984). Geochemical compositions and depositional conditions of Upper Jurassic and Lower Cretaceous Yorkshire clays, England. Geological Magazine 121: 489-504.
  • Eker SÇ (2012). Petrography and geochemistry of Eocene sandstones from eastern Pontides (NE Turkey): implications for source area weathering, provenance and tectonic setting. Geochemistry International 50 (8): 683-701.
  • Eker SÇ, Korkmaz S (2011). Mineralogy and whole rock geochemistry of Late Cretaceous sandstones from the Eastern Pontides, (NE Turkey). Neues Jahrbuch für Mineralogie Abhandlungen 188: 235-256.
  • Erdem E (1987). Petrological investigation of magmatic rocks around Elazığ Kartaldere Gölardı (NE of Hazar Lake). MSc, Fırat University, Elazığ, Turkey (in Turkish).
  • Eriş KK (2013). Late Pleistocene Holocene sedimentary records of climate and lake- level changes in Lake Hazar, Eastern Anatolia, Turkey. Quaternary International 302: 123-134.
  • Eriş KK, Arslan TN, Sabuncu A (2018b). Influences of climate and tectonic on the middle to late Holocene deltaic sedimentation in Lake Hazar, Eastern Turkey. Arabian Journal for Science and Engineering 43: 3685-3697.
  • Eriş KK, Ön SA, Çagatay MN¸ Ülgen UB, Ön ZB et al. (2018a). Late Pleistocene to Holocene paleoenvironmental evolution of Lake Hazar, Eastern Anatolia, Turkey. Quaternary International 436: 4-16.
  • Ertürk MA, Beyarslan M, Chung SL, Lin TH (2018). Eocene magmatism (Maden Complex) in the Southeast Anatolian Orogenic Belt: magma genesis and tectonic implications. Geoscience Frontiers 9 (6): 1829-1847.
  • Fedo CM, Eriksson K, Krogstad EJ (1996). Geochemistry of shale from the Archean (~3.0 Ga) Buhwa Greenstone belt, Zimbabwe: implications for provenance and source area weathering. Geochimica Cosmochimica Acta 60: 1751-1763.
  • Fedo CM, Nesbitt HW, Young GM (1995). Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23: 921-924.
  • Fischer G, Wefer G (1999). Use of Proxies in Paleoceanography: Examples from the South Atlantic. New York, NY, USA: Springer-Verlag.
  • Floyd PA, Winchester JA, Park RG (1989). Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research 45: 203-214.
  • Folk RL (1974). Petrology of Sedimentary Rocks. Austin, TX, USA: Hemphill Publishing Company.
  • Gao S, Wedepohl KH (1995). The negative Eu anomaly in Archean sedimentary rock: implications for decomposition, age and importance of their granitic sources. Earth and Planetary Science Letters 133: 81-94.
  • Garcia-Moreno D, Hubert A, Moernaut J, Fraser J, Boes X et al. (2010). Structure and evolution of Lake Hazar pull-apart basin along the East Anatolian Fault. Basin Research 36: 191-207.
  • Garzanti E, Al-Juboury AI, Zoleikhaei Y, Vermeesch P, Jaafar J et al. (2016). The Euphrates-Tigris-Karun River system: provenance, recycling and dispersal of quartz-poor foreland-basin sediments in arid climate. Earth Science Reviews 162: 107-128.
  • Gromet LP, Dymek RF, Haskin LA, Korotev RI (1984). The North American Shale Composite: its compilation, major and trace element characteristics. Geochimica et Cosmochimicia Acta 48: 2469-2482.
  • Guo Q, Shields GA, Liu C, Strauss H, Zhu M et al. (2007). Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: implications for organosedimentary metal enrichment and silicification in the early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology 254: 194- 216.
  • Gürocak Z (1993). Geology of Sivrice town (Elazığ). MSc, Firat University, Elazığ, Turkey (in Turkish).
  • Hallberg RO (1976). A geochemical method for investigation of paleoredox conditions in sediments. Ambio Special Report 4: 139-147.
  • Hara H, Kurihara T, Kuroda J, Adach Y, Kurita H et al. (2010). Geological and geochemical aspects of a Devonian siliceous succession in northern Thailand: implications for the opening of the Paleo-Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology 297: 452-464.
  • Harnois L (1988). The CIW index: a new chemical index of weathering. Sedimentary Geology 55: 319-322.
  • Hempton MR, Dunne LA, Dewey JF (1983). Sedimentation in active strike-slip basin, Southeastern Turkey. Journal of Geology 91: 401-412.
  • Hempton MR, Savcı G (1982). Petrological and structural features of the Elazığ volcanic complex. Türkiye Jeoloji Kurumu Bülteni 25: 143- 151 (in Turkish).
  • Hernández-Hinojosa V, Montiel-García PC, Armstrong-Altrin JS, Nagarajan R, Kasper-Zubillaga JJ (2018). Textural and geochemical characteristics of beach sands along the western Gulf of Mexico, Mexico. Carpathian Journal of Earth and Environmental Sciences 13: 161-174.
  • Herron MM (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research 58: 820-825.
  • Hseu ZY, Tsai H, His HC, Chen YC (2007). Weathering sequences of clay minerals in soils along a serpentinitic toposequence. Clays and Clay Minerals 55 (4): 389-401.
  • Huvaj YN, Huff WD (2016). Clay mineralogy and geochemistry of three offshore wells in the southwestern Black Sea, northern Turkey: the effect of burial diagenesis on the conversion of smectite to illite. Turkish Journal of Earth Sciences 25: 592-610.
  • Johnsson MJ (2000). Tectonic assembly of east-central Alaska: evidence from Cretaceous-Tertiary sandstones of the Kandik River terrane. Geological Society of America Bulletin 112: 1023-1042.
  • Jones B, Manning DAC (1994). Comparison of geological indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology 111: 111-129.
  • Khalifa A, Çakır Z, Owen LA, Kaya Ş (2018). Morphotectonic analysis of the East Anatolian Fault, Turkey. Turkish Journal of Earth Sciences 27: 110-126.
  • Kimura H, Watanabe Y (2001). Oceanic anoxia at the PrecambrianCambrian boundary. Geology 29: 995-998. Kiseeva ES, Fonseca ROC, Smythe DJ (2017). Chalcophile elements and sulfides in the upper mantle. Elements 13: 111-116.
  • Ling HF, Chen X, Li DA, Wang D, Shields-Zhou GA et al. (2013). Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: implications for oxygenation of coeval shallow seawater. Precambrian Research 225: 1-18.
  • Liu W, Huang Y, An Z, Clemens SC, Li L et al. (2005). Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau; carbon isotope evidence from bulk organic matter and individual leaf waxes. Palaeogeography, Palaeoclimatology, Palaeoecology 220 (3/4): 243-254.
  • Malick BML, Ishiga H (2016). Geochemical classification ad determination of maturity source weathering in beach sands of eastern San’in Coast, Tango Peninsula, and Wakas Bay, Japan. Earth Science Research 5: 44-56.
  • Martinez-Ruiz F, Kastner M, Gallego-Torres D, RodrigoGamiz M, Nieto-Moreno V et al. (2015). Paleoclimate and paleoceanography over the past 20.000 yr in the Mediterranean Sea Basins as indicated by sediment elemental proxies. Quaternary Science Reviews 107: 25-46.
  • Maynard JB (1992). Chemistry of modern soils as a guide to interpreting Precambrian paleosols. Journal of Geology 100: 279-289.
  • McLennan SM (1993). Weathering and global denudation. Journal of Geology 101: 295-303.
  • McLennan SM (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophysics Geosystems 2 (4): 1021-1024.
  • McLennan SM, Hemming S, McDaniel D, Hanson G (1993). Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Papers 284: 21-40.
  • Millot G (1970). Geology of Clays. New York, NY, USA: Springer.
  • Milodowsky AE, Zalasiewicz JA (1991). Redistribution of rare-earth elements during diagenesis of turbidite/hemipelagite mudrock sequences of Liandovery age from central Wales. Geological Society of London Special Publications 57: 101-124.
  • Mir AR (2015). Rare earth element geochemistry of Post- to Neoarchean shales from Singhbhum mobile belt, Eastern India: implications for tectonic setting and paleo-oxidation conditions. Chinese Journal of Geochemistry 34 (3): 401-409.
  • Mishra M, Sen S (2012). Provenance, tectonic setting and sourcearea weathering of Mesoproterozoic Kaimur Group, Vindhyan Supergroup, Central India. Geologica Acta 10: 283-293.
  • Mongelli G, Cullers, RL, Muelheisen S (1996). Geochemistry of Late Cretaceous-Oligocenic shales from the Varicolori Formation, southern Apennines, Italy: implications for mineralogical, grain-size control and provenance. European Journal of Mineralogy 8: 733-754.
  • Mourabet ME, Barakat A, Zaghloul MN, Baghdadi ME (2018). Geochemistry of the Miocene Zoumi flysch thrust-top basin (External Rif, Morocco): a new constrains on source area weathering, recycling processes, and paleoclimate conditions. Arabian Journal of Geosciences 11 (126): 2-18.
  • Möller P, Bau M (1993). Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. Earth and Planetary Science Letters 117: 671-676.
  • Nagarajan R, Madhavaraju J, Armstrong-Altrin JS, Nagendra R (2007). Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, southern India. Journal of Geosciences 15: 9-25.
  • Nesbitt HW, Young GM (1982). Early Proterozoic climate and plate motions inferred from major element chemistry of lutites. Nature 299: 715-717.
  • Ön ZB, Ön AS, Ozeren MS, Eriş KK, Greaves MA et al. (2017). Climate proxies for the last 17.3 ka from Lake Hazar (Eastern Anatolia), extracted by independent component analysis of m-XRF data. Quaternary International 486: 17-28.
  • Rahman MJJ, Suzuki S (2007). Geochemistry of sandstones from the Miocene Surma Group, Bengal Basin, Bangladesh: implications for provenance, tectonic setting and weathering. Geochemical Journal 41: 415-428.
  • Rimmer SM (2004). Geochemical paleoredox indicators in Devonien-Missipian Black Shales, Central Appalachian Basin (USA). Chemical Geology 206: 373-391.
  • Robertson AHF, Parlak O, Rizaoglu T, Ünlügenc UC, Inan N et al. (2007). Tectonic evolution of the South Tethyan Ocean: evidence from the Eastern Taurus Mountains (Elazig region, SE Turkey). In: Ries AC, Butler RWH, Graham RH (editors). Deformation of the Continental Crust. The Legacy of Mike Coward. London, UK: Geological Society of London Special Publications, pp. 231-270.
  • Roddaz M, Viers J, Brusset S, Baby P, Boucayrand C et al. (2006). Controls on weathering and provenance in the Amazonian foreland basin: insights from major and trace element geochemistry of Neogene Amazonian sediments. Chemical Geology 226: 31-65.
  • Roser BP, Korsch RJ (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2 O/Na2 O ratio. Journal of Geology 94 (5): 635-650.
  • Şengör AMC, Görür N, Saroğlu F (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. Society for Sedimentary Geology 37: 227-267.
  • Şengün F, Koralay OE (2019). Petrography, geochemistry, and provenance of Jurassic sandstones from the Sakarya Zone, NW Turkey. Turkish Journal of Earth Sciences 28: 603-622.
  • Shields G, Stille P (2001). Diagenetic constrains on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology 175: 29-48.
  • Sholkovitz ER (1988). Rare earth elements in the sediments of the North Atlantic Ocean, Amazon delta and East China Sea: reinterpretation of terrigenous input patterns to the ocean. Journal of American Science 288: 236-228.
  • Siani G, Paterne M, Arnold M, Bard E, Metivier B et al. (2000). Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea. Radiocarbon 42: 271-280.
  • Song E, Zhang K, Chen J, Wang C, Jiang G et al. (2014). Clay mineralogy and its paleoclimatic significance of the Oligocene‐ Miocene sediments in the Gerze Basin, Tibet. Acta Geologica Sinica 88 (5): 1579-1591.
  • Stuiver M, Reimer PJ (1993). Extended 14 C database and revised CALIB radiocarbon calibration program. Radiocarbon 35: 215-230.
  • Tang Y, Sang L, Yuan Y, Zhang Y, Yang Y (2012). Geochemistry of Late Triassic pelitic rocks in the NE part of Songpan-Ganzi Basin, western China: implications for source weathering, provenance and tectonic setting. China University of Geosciences (Beijing) Geoscience Frontiers 3 (5): 647-660.
  • Tao H, Wang Q, Yang X, Jiang L (2013). Provenance and tectonic setting of Late Carboniferous clastic rocks in West Junggar, Xinjiang, China: a case from the Hala-alat Mountains. Journal of Asian Earth Sciences 64: 210-222.
  • Tawfik HA, Ghandou IM, Maejima W, Armstrong-Altrin JS, AbdelHameed AT (2015). Petrography and geochemistry of the siliciclastic Araba Formation (Cambrian), east Sinai, Egypt: implications for provenance, tectonic setting and source weathering. Geological Magazine 154: 1-23.
  • Taylor SR, McLennan SM (1985). The Continental Crust: Its Composition and Evolution. 1st ed. Oxford, UK: Blackwell.
  • Temel A, Gündoğdu MN (1996). Zeolite occurrences and the erionite-mesothelioma relationship in Cappadocia, Central Anatolia, Turkey. Mineraleum Deposita 31: 539-547.
  • Tetiker S (2014). Petrography and geochemistry of early Palaeozoic clastic rocks from the southeast Anatolian autochthone rocks in Mardin area (Derik-Kızıltepe), Turkey. Carpathian Journal of Earth and Environmental Sciences 1: 149-162.
  • Toulkeridis T, Clauer N, Kröner A, Reimer T, Todt W (1999). Characterization, provenance, and tectonic setting of fig tree greywackes from the Archaen Barberton greenstone belt, South Africa. Sedimentary Geology 124: 113-129.
  • Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006). Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology 232: 12-32.
  • Uddin MK (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal 308: 438-462.
  • Ural M, Arslan M, Göncüoğlu MC, Tekin UK, Kürüm S (2015). Late cretaceous arc and back-arc formation within the southern Neotethys: whole-rock, trace element and Sr-Nd-Pb isotopic data from basaltic rocks of the Yüksekova Complex (MalatyaElazığ, SE Turey). Ofioliti 4: 57-72.
  • Verma SP, Armstrong-Altrin JS (2013). New multi-dimensional diagrams for tectonic discrimination of siliclastic sediments and their application to Precambrian basins. Chemical Geology 355: 117-133.
  • Vital H, Stattegger K (2000). Major and trace elements of stream sediments from the lowermost Amazon River. Chemical Geology 168: 151-168.
  • Wanas HA, Abdel-Maguid NM (2006). Petrography and geochemistry of the Cambro-Ordovician Wajid Sandstone, southwest Saudi Arabia: implications for provenance and tectonic setting. Journal of Asian Earth Sciences 27 (4): 416-429.
  • Wedepohl KH (editor) (1978). Handbook of Geochemistry II/2. Berlin, Germany: Springer.
  • Wignall PB, Myers KJ (1988). Interpreting benthic oxygen levels in mudrocks: a new approach. Geology 16 (5): 452-455.
  • Wignall PB, Twitchett RJ (1996). Ocean anoxia and the end-Permian mass extinction. Science 272: 1155-1S158.
  • Yang K, Kim JW, Kogure T, Dong H, Baik H et al. (2016). Smectite, illite, and early diagenesis in South Pacific Gyre subseafloor sediment. Applied Clay Science 134: 34-43.
  • Yang Z, Lu W, Bao X, Yang Q (2011). Assessment of heavy metal contamination in urban topsoil from Changchun City, China. Journal of Geochemistry Exploration 108: 27-38.
  • Yazgan E, Chessex R (1991). Geology and tectonic evolution of the southeastern Taurides in the region of Malatya. Turkish Association of Petroleum Geologists 3: 1-42.
  • Yuretich R, Melles M, Sarata B, Grobe H (1999). Clay minerals in the sediments of Lake Baikal: a useful climate proxy. Journal of Sedimentary Research 69 (3): 588-596.
  • Zhao Z, Zhao, JH, Wang HJ, Liao JD, Liu CM (2007). Distribution characteristics and applications of trace elements in Junggar Basin. Natural Gas Exploration and Development 30: 30-33.