GPS-derived source parameters of the 2014 North Aegean earthquake (Mw 6.9)

GPS-derived source parameters of the 2014 North Aegean earthquake (Mw 6.9)

We analyzed GPS data to investigate the source parameters of the 2014 North Aegean earthquake (Mw 6.9). We simultaneously inverted strike, dip, rake, average slip, moment, size, and location of the mainshock rupture using coseismic displacements. Wealso investigated static stress change associated with the mainshock and its influence on aftershock activity. Previous solutions of focalmechanism showed that mainshock has a nearly pure strike-slip nature. Our results also indicate that the mainshock has a right lateralstrike-slip mechanism with a substantial extensional component. Average coseismic slips are 48 cm and 25 cm on the horizontal andvertical axis, respectively. Coseismic displacements reach up to 51.35 ± 4.55 mm at ~60 km from the hypocenter (LEMN station). Itappears that the mainshock ruptured a fault section approximately 28 km deep and 70 km long and generated a stress drop along theruptured segment ranging between 3 and 10 bar, with a stress increase of 3 bar at the edges of the rupture. Aftershocks were distributedto a broader area as coseismic stress increase affected a 200-km-long section of the western North Anatolian Fault.

___

  • Aktuğ B, Kaypak B, Çelik RN (2010). Source parameters for the Mw= 6.6, 03 February 2002, Çay Earthquake (Turkey) and aftershocks from GPS, Southwestern Turkey. Journal of Seismology 14: 445. doi.org/10.1007/s10950-009-9174-y
  • Blewitt G (1998). GPS data processing methodology: from theory to applications In: Teunissen PJG, Kleusberg A (editors). GPS for Geodesy. New York, NY, USA: Springer-Verlag, pp. 231-270.
  • Bulut F, Özener H, Doğru A, Aktuğ B, Yaltırak C (2018). Structural setting along the Western North Anatolian Fault and its influence on the 2014 North Aegean Earthquake (Mw 6.9). Tectonophysics 745: 382-394. doi: 10.1016/j.tecto.2018.07.006
  • Chousianitis K, Ganas A, Evangelidis CP (2015). Strain and rotation rate patterns of mainland Greece from continuous GPS data and comparison between seismic and geodetic moment release. Journal of Geophysical Research Solid Earth 120: 3909- 3931. doi: 10.1002/2014JB011762
  • Evangelidis C (2015). Imaging supershear rupture for the 2014 Mw 6.9 Northern Aegean earthquake by backprojection of strong motion waveforms. Geophysical Research Letters 42: 307-315. doi: 10.1002/2014GL062513
  • Heflin MB, Bertiger WI, Blewitt G, Freedman AP, Hurst KJ et al. (1992). Global geodesy using GPS without fiducial sites. Geophysical Research Letters 19: 131-134.
  • Herring TA (2004). GLOBK: Global Kalman Filter VLBI and GPS Analysis Program. Cambridge, MA, USA: Massachusetts Institute of Technology.
  • King RW, Bock Y (2004). Documentation of the MIT GPS Analysis Software: GAMIT. Cambridge, MA, USA: Massachusetts Institute of Technology.
  • Kiratzi A, Tsakiroudi E, Benetatos C, Karakaisis G (2016). The 24 May 2014 (Mw6.8) earthquake (North Aegean Trough): spatiotemporal evolution, source and slip model from teleseismic data. Physics and Chemistry of the Earth 95: 85-100. doi: 10.1016/j.pce.2016.08.003
  • Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983). Optimization by simulated annealing. Science 220 (4598): 671-680.
  • Kreemer C, Blewitt G, Klein EC (2014). A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems 15: 3849-3889. doi: 10.1002/2014GC0054 07
  • Konca AO, Cetin S, Karabulut H, Reilinger R, Dogan U et al. (2018). The 2014, M W6.9 North Aegean earthquake: seismic and geodetic evidence for coseismic slip on persistent asperities. Geophysical Journal International 213 (2): 1113-1120.
  • Letellier T (2004). Etude des ondes de marée sur les plateux continentaux. PhD, Université de Toulouse III, Toulouse, France (in French).
  • Loveless JP, Meade BJ (2011). Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 Mw = 9.0 Tohoku-Oki earthquake. Geophysical Research Letters 38: L17306. doi: 10.1029/2011GL048561
  • McCarthy DD, Petit G (2004). IERS Conventions (2003). IERS Technical Note 32. Frankfurt, Germany: Verlag des Budesamts fur Kartographie und Geodasie.
  • McKenzie DP (1972). Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society 30: 109-185.
  • McKenzie DP (1978). Active tectonics of the Alpine Himalayan Belt, the Aegean Sea and surrounding regions. Geophysical Journal of the Royal Astronomical Society 55: 217-252.
  • McNeill LC, Mille A, Minshull TA, Bull JM, Kenyon NH et al. (2004). Extension of the North Anatolian Fault into the North Aegean Trough: evidence for transtension, strain partitioning, and analogues for Sea of Marmara basin models. Tectonics 23 (2): TC2016. doi: 10.1029/2002TC001490
  • Meade BJ, Hager BH (2005). Block models of crustal motion in southern California constrained by GPS measurements. Journal of Geophysical Research: Solid Earth 110: B3.
  • Moreno M, Rosenau M, Oncken O (2010). 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature 467 (7312): 198-202. doi: 10.1038/nature09349
  • Okada Y (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America 75 (4): 1135-1154.
  • Pérouse E, Chamot-Rooke N, Rabaute A, Briole P, Jouanne F et al. (2012). Bridging onshore and offshore present-day kinematics of central and eastern Mediterranean: Implications for crustal dynamics and mantle flow. Geochemistry, Geophysics, Geosystems 13: Q09013. doi: 10.1029/2012GC004289
  • Saastamoinen J (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: Henriksen
  • SW, Mancini A, Chovitz BH (editors). The Use of Artificial Satellites for Geodesy. Geophysical Monograph Series (15). Washington, DC, USA: AGU, pp. 247-251.
  • Saltogianni V, Gianniou M, Taymaz T, Yolsal-Çevikbilen S, Stiros S (2015). Fault slip source models for the 2014 Mw 6.9 Samothraki-Gökçeada earthquake (North Aegean trough) combining geodetic and seismological observations. Journal of Geophysical Research 120 (12): 8610-8622. doi: 10.1002/2015JB012052
  • Savage JC (1983). A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research: Solid Earth 88 (B6): 4984-4996.
  • Taymaz T, Jackson JA, McKenzie D (1991). Active tectonics of the North and Central Aegean Sea. Geophysical Journal International 106: 433-490.
  • Toda S, Stein RS, Sevilgen V, Lin J (2011). Coulomb 3.3 Graphic-Rich Deformation and Stress-Change Software for Earthquake, Tectonic, and Volcano Research and Teaching—User Guide. U.S. Geological Survey Open-File Report 2011–1060. Reston, VA, USA: USGS.
  • Utkucu M, Alptekin Ö, Pınar A (2003). A detailed source study of the Orta (Çankırı) earthquake of June 6, 2000 (MS = 6.1): an intraplate earthquake in central Anatolia. Journal of Seismology 7 (2): 193-202.
  • Wessel P, Smith WHF, Scharroo R, Luis JF, Wobbe F (2013). Generic mapping tools: improved version released EOS Trans. AGU 94 (45): 409-410.
  • Yaltırak C, Alpar B (2002). Kinematics and evolution of the northern branch of the North Anatolian Fault (Ganos Fault) between the Sea of Marmara and the Gulf of Saros. Marine Geology 190 (1-2): 351-366.