Comparison of stable isotope values of Quaternary calcretes from Adana and Mersin provinces: implications on controlling factors

Comparison of stable isotope values of Quaternary calcretes from Adana and Mersin provinces: implications on controlling factors

Calcretes are widespread in Adana and Mersin provinces and form under different morphologies. Most calcrete profilescomprise a hard laminated crust/hardpan at the top, gradually intergrading into the nodular and/or tubular/columnar horizon withdepth. This study compares the δ18O and δ13C values of calcretes from both provinces and discusses the controlling factors andenvironmental conditions. The δ18O and δ13C values are characteristic for the pedogenic calcretes. The Adana calcrete mean δ18O valuesof the hardpan, nodules and tubes, and fractures-infills are 0.69‰, 0.77‰, and 1.04‰ PDB heavier than those of the Mersin calcretes,respectively. The overall difference between the two groups is 0.78‰ PDB. The differences are related to the high evaporation rate inAdana province in respect to Mersin province under similar climatic conditions, except for the evaporation rate. The high evaporationrate in Adana province is due to higher ventilation. The δ13C values of both provinces are almost the same, reflecting calcrete formationin soil with abundant C3 vegetation similar to contemporary vegetation. In addition, the mean δ18O and δ13C values of the hardpancalcretes slightly differ from those of the columnar horizon, showing a depletion in heavy isotopes. The depletion in the mean δ18Ovalues of hard laminated crust in respect to the columnar horizon is 0.09‰ PDB for Adana calcretes and 0.12‰ PDB for Mersincalcretes. This is related to the relatively thick water film from which the calcretes formed by precipitation and displacive replacementprocesses. The difference in the mean δ13C values is 0.32‰ PDB for the Adana calcretes and 0.11‰ PDB for the Mersin calcretes, andthe depletion in δ13C values of the hard laminated crust reflects proximity of the bioactive horizon in the soil.

___

  • Achyuthan H (2003). Petrologic analysis and geochemistry of the Late Neogene-Early Quaternary hardpan calcretes of western Rajasthan, India. Quaternary International 106-107: 3-10.
  • Achyuthan H, Quade J, Roe L, Placzek C (2007). Stable isotopic composition of pedogenic carbonates from the eastern margin of the Thar Desert, Rajasthan, India. Quaternary International 162-163: 50-60.
  • Achyuthan H, Shankar N, Braida M, Ahmad SM (2012). Geochemistry of calcretes (calcic palaeosols and hardpan), Coimbatore, Southern India: formation and paleoenvironment. Quaternary International 265: 155-169.
  • Alçiçek H, Alçiçek MC (2014). Palustrine carbonates and pedogenic calcretes in the Çal basin of SW Anatolia: implications for the Plio-Pleistocene regional climatic pattern in the eastern Mediterranean. Catena 112: 48-55.
  • Alonso-Zarza AM (2003). Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth Science Reviews 60: 261-298.
  • Alonso-Zarza AM, Arenas C (2004). Cenozoic calcretes from the Teruel Graben, Spain: microstructure, stable isotope geochemistry and environmental significance. Sedimentary Geology 167: 91-108.
  • Alonso-Zarza AM, Wright VP (2010). Calcretes. In: AlonsoZarza AM, Tanner LH (editors). Carbonates in Continental Settings: Facies, Environment, and Processes. Developments in Sedimentology 61: 225-267.
  • Anand RR, Phang C, Wildman JE, Lintern MJ (1997). Genesis of some calcretes in the southern Yilgarn Craton, Western Australia: implications for mineral exploration. Australian Journal of Earth Sciences 44: 87-103.
  • Andrews JE, Singhvi AK, Kailath AJ, Kuhn R, Dennis PF et al. (1998). Do stable isotope data from calcrete record late Pleistocene Monsoonal climate variation in the Thar Desert of India? Quaternary Research 50: 240-251.
  • Atabey E, Atabey N, Kara H (1998). Sedimentology of caliche (calcrete) occurrences of the Kırşehir region. Bulletin of the Mineral Research and Exploration 120: 69-80.
  • Atalay İ (1996). Palaeosols as indicators of the climatic changes during the Quaternary period in S Anatolia. Journal of Arid Environments 32: 23-35.
  • Bajnóczi B, Horváth Z, Demény A, Mindszenty A (2006). Stable isotope geochemistry of calcrete nodules and septarian concretions in a Quaternary “red clay” paleovertisol from Hungary. Isotopes in Environmental and Health Studies 42: 335-350.
  • Bar-Matthews M, Ayalon A, Gilmour M, Matthews A, Hawkesworth CJ (2003). Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67: 3181-3199.
  • Bouza PJ, Simón M, Aguilar J, del Valle H, Rostagno M (2007). Fibrous-clay mineral formation and soil evolution in aridisols of northeastern Patagonia, Argentina. Geoderma 139: 38-50.
  • Candy I, Adamson K, Gallant CE, Whitfield E, Pope R (2012). Oxygen and carbon isotopic composition of Quaternary meteoric carbonates from western and southern Europe: their role in palaoenvironmental reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 326-328: 1-11.
  • Cerling TE (1984). The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters 71: 229-240.
  • Cerling TE, Quade J, Wang Y, Bowman JR (1989). Carbon isotopes in soils and paleosols as ecology and paleoecology indicators. Nature 341: 138-139.
  • Chiquet A, Colin F, Hamelin B, Michard A, Nahon D (2000). Chemical mass balance of calcrete genesis on the Toledo granite (Spain). Chemical Geology 170: 19-35.
  • Darbaş G, Nazik A, Temel A, Gürbüz K (2008). A paleoenvironmental test of the Messinian Salinity Crisis using Miocene-Pliocene clays in the Adana Basin, southern Turkey. Applied Clay Science 40: 108-118.
  • Dietzel M, Tang J, Leis A, Köhler SJ (2009). Oxygen isotopic fractionation during inorganic calcite precipitation – effects of temperature, precipitation rate and pH. Chemical Geology 268: 107-115.
  • Durand N, Gunnell Y, Curmi P, Ahmad SM (2006). Pathways of calcrete development on weathered silicate rocks in Tamil Nadu, India: mineralogy, chemistry and paleoenvironmental implications. Sedimentary Geology 192: 1-18.
  • Dworkin SI, Nordt L, Atchley S (2005). Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate. Earth and Planetary Science Letters 237: 56-68.
  • Elidrissi S, Daoudi L, Arabi B, Fagel N (2017). Development of quaternary calcrete in the Tensift Al Haouz area, Central Morocco: characterization and environmental significance. Catena 149: 331-340.
  • Elidrissi S, Daoudi L, Fagel N (2018). Palygorskite occurrences and genesis in Calcisol and groundwater carbonates of the Tensift Al Haouz area, Central Morocco. Geoderma 316: 78-88.
  • Eren M (2007). Genesis of tepees in the Quaternary hardpan calcretes, Mersin, S Turkey. Carbonates Evaporites 22: 123-134.
  • Eren M (2011). Stable isotope geochemistry of Quaternary calcretes in the Mersin area, southern Turkey – A comparison and implications for their origin. Geochemistry 71: 31-37.
  • Eren M, Hatipoğlu-Bağcı Z (2010). Karst surface features of the hard laminated crust (caliche hardpan) in the Mersin area, southern Turkey. Acta Carsologica 39: 93-102.
  • Eren M, Kadir S, Hatipoğlu Z, Gül M (2008). Quaternary calcrete development in the Mersin area, southern Turkey. Turkish Journal of Earth Sciences 17: 763-784.
  • Eren M, Kaplan MY, Kadir S, Kapur S (2018). Biogenic (β-fabric) features in the hard laminated crusts of the Mersin and Adana regions, southern Turkey and the role of soil organisms in the formation of the calcrete profiles. Catena 168: 34-46.
  • Erol O (1981). Quaternary pluvial and interpluvial conditions in Anatolia and environmental changes in south-central Anatolia since the last glaciation. In: Prey W, Uarpmann HP (editors). Contributions to the Environmental History of South Asia. Beihefte zum Tübinger Atlas des Vorderen Orients. Tübingen, Germany: University of Tübingen, pp. 101-109.
  • Erol O (1984). Neogene and Quaternary continental formation and their significance for soil formation. In: Proceedings of the 1st National Clay Symposium, Adana, Turkey, pp. 24-28 (in Turkish).
  • Friedman I, O’Neil JR (1977). Compilation of stable isotope factors of geochemical interest. In: Fleischer M (editor). Data of Geochemistry. Professional Paper 440-KK. Reston, VA, USA: United States Geological Survey, pp. 1-12.
  • Gallala W, Gaied ME, Essefi E, Montacer M (2010). Pleistocene calcretes from eastern Tunisia: the stratigraphy, the microstructure and the environmental significance. African Journal of Earth Sciences 58: 445-456.
  • Garcia-Romero E, Barrios MS, Revuelta MAB (2004). Characteristics of a Mg-palygorskite in Miocene rocks, Madrid Basin (Spain). Clays and Clay Minerals 52: 484-494.
  • Gong SY, Mii HS, Wei KY, Horng CS, You CF et al. (2005). Dry climate near the western Pacific warm pool: Pleistocene caliches of the Nansha Islands, South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 226: 205-213.
  • Goudie AS (1973). Duricrusts in Tropical Landscapes. Oxford, UK: Clarendon Press.
  • Gürbüz K (1999). Regional implications of structural and eustatic controls in the evolution of submarine fans: an example from the Miocene Adana Basin, southern Turkey. Geological Magazine 136: 311-319.
  • Gürel A, Özcan S (2016). Paleosol and dolocrete associated clay mineral occurrences in siliciclastic red sediments of the Late Miocene Kömişini Formation of the Tuzgölü basin in central Turkey. Catena 143: 102-113.
  • Horn BLD, Pereira VP, Schultz CL (2013). Calcretes of the Santa Maria supersequence, Middle Triassic, Rio Grande do Sul, Brazil: classification, genesis and paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 376: 39- 47.
  • Kadir S, Eren M (2008). The occurrence and genesis of clay minerals associated with Quaternary caliches in the Mersin area, southern Turkey. Clays and Clay Minerals 56: 244-258.
  • Kadir S, Eren M, Atabey E (2010). Dolocretes and associated palygorskite occurrences in siliciclastic red mudstones of the Sariyer formation (Middle Miocene), southeastern side of the Çanakkale strait, Turkey. Clays and Clay Minerals 58: 205-219.
  • Kadir S, Eren M, Külah T, Erkoyun H, Huggett J et al. (2018). Genesis of palygorskite and calcretes in Pliocene Eskişehir Basin, west central Anatolia, Turkey. Catena 168: 62-78.
  • Kadir S, Eren M, Kulah T, Önalgil N, Cesur M et al. (2014). Genesis of Late Miocene-Pliocene lacustrine palygorskite and calcretes from Kırşehir, central Anatolia, Turkey. Clay Minerals 49: 433- 454.
  • Kaplan MY, Eren M, Kadir S, Kapur S (2013). Mineralogical, geochemical and isotopic characteristics of Quaternary calcretes in the Adana region, southern Turkey: implications on their origin. Catena 101: 164-177.
  • Kaplan MY, Eren M, Kadir S, Kapur S, Huggett J (2014). A microscopic approach to the pedogenic formation of palygorskite associated with Quaternary calcretes of the Adana area, southern Turkey. Turkish Journal of Earth Sciences 23: 559-574.
  • Kapur S, Çavuşgil VS, FitzPatrick EA (1987). Soil-calcrete (caliche) relationship on a Quaternary surface of the Cukurova Region, Adana (Turkey). In: Federoff N, Bresson LM, Courty MA (editors). Soil Micromorphology. Paris, France: Association Française pour L’Etude du sol, pp. 597-603.
  • Kapur S, Çavuşgil VS, Şenol M, Gurel N, FitzPatrick EA (1990). Geomorphology and pedogenic evolution of Quaternary calcretes in the northern Adana Basin of southern Turkey. Zeitschrift für Geomorphologie 34: 49-59.
  • Kapur S, Saydam C, Akça E, Çavuşgil VS, Karaman C et al. (2000). Carbonate pools in soil of the Mediterranean: a case study from Anatolia. In: Lal R, Kimble JM, Eswaran H, Stewart BA (editors). Global Climate Change and Pedogenic Carbonates. Boca Raton, FL, USA: Lewis Publishers, pp. 187-212.
  • Kapur S, Yaman S, Gokçen SL, Yetiş C (1993). Soil stratigraphy and Quaternary caliche in the Misis area of the Adana Basin, southern Turkey. Catena 20: 431-445.
  • Kaufman L, Rousseeuw PJ (2009). Finding Groups in Data: An Introduction to Cluster Analysis. Hoboken, NJ, USA: John Wiley & Sons.
  • Kelly M, Black S, Rowan JS (2000). A calcrete-based U/Th chronology for landform evolution in the Sorbas basin, southeast Spain. Quaternary Science Reviews 19: 995-1010.
  • Klappa CF (1983). A process-response model for the formation of pedogenic calcretes. In: Wilson RCL (editor). Residual Deposits: Surface Related Weathering Processes and Materials. London, UK: Geological Society of London Special Publications, pp. 211-220.
  • Kovda I, Mora CI, Wilding LP (2006). Stable isotope compositions of pedogenic carbonates and soil organic matter in a temperate climate vertisol with gilgai, southern Russia. Geoderma 136: 423-435.
  • Küçükuysal C (2016). Late Pleistocene calcretes from central Anatolia (Lake Eymir and Mogan, Gölbaşı Basin): comparison to Quaternary calcretes from Turkey. Journal of Earth Science 27: 874-882.
  • Küçükuysal C, Engin B, Türkmenoğlu AG, Aydaş C (2011). ESR dating of calcrete nodules from Bala, Ankara (Turkey): preliminary results. Applied Radiation and Isotopes 69: 492- 499.
  • Küçükuysal C, Kapur S (2014). Mineralogical, geochemical and micromorphological evaluation of the Plio-Quaternary paleosols and calcretes from Karahamzalı, Ankara (central Turkey). Geologica Carpathica 65: 241-253.
  • Küçükuysal C, Türkmenoğlu AG, Kapur S (2013). Multi-proxy evidence of Mid-Pleistocene dry climates observed in calcretes in central Turkey. Turkish Journal of Earth Sciences 22: 463- 483.
  • Lee YI (1999). Stable isotopic composition of calcic paleosols of the Early Cretaceous Hasandong Formation, southeastern Korea. Palaeogeography, Palaeoclimatology, Palaeoecology 150: 123- 133.
  • Leone G, Bonadonna F, Zanchetta G (2000). Stable isotope record in Mollusca and pedogenic carbonate from Late Pliocene soils of Central Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 163: 115-131.
  • Mann AW, Horwitz RC (1979). Groundwater calcrete deposits in Australia some observations from Western Australia. Journal of the Geological Society of Australia 26: 293-303.
  • McDermott F (2004). Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews 23: 901-918.
  • Meléndez A, Alonso-Zarza AM, Sancho C (2011). Multi-storey calcrete profiles developed during the initial stages of the configuration of the Ebro Basin’s exorrheic fluvial network. Geomorphology 134: 232-248.
  • Mortazavi M, Moussavi-Harami R, Brenner RL, Mahboubi A, Nadjafi M (2013). Stable isotope record in pedogenic carbonates in northeast Iran: implications for Early Cretaceous (Berriasian– Barremian) paleovegetation and paleoatmospheric P(CO2) levels. Geoderma 211-212: 85-97.
  • Nash DJ, McLaren SJ (2003). Kalahari valley calcretes: their nature, origins, and environmental significance. Quaternary International 111: 3-22.
  • Özer AM, Wieser A, Göksu HY, Müller P, Regulla DF et al. (1989). ESR and TL age determination of caliche nodules. International Journal of Radiation Applications and Instrumentation Part A 40: 1159-1162.
  • Purvis K, Wright VP (1991). Calcretes related to phreatophytic vegetation from the Middle Triassic Otter Sandstone of south west England. Sedimentology 38: 539-551.
  • Salomons W, Goudie A, Mook WG (1978). Isotopic composition of calcrete deposits from Europe, Africa and India. Earth Surface Processes 3: 43-57.
  • Schmidt GC (1961). Stratigraphic nomenclature for the Adana region petroleum district VII. Petroleum Administration Bulletin 6: 47-63.
  • Shankar N, Achyuthan H (2007). Genesis of calcic and petrocalcic horizons from Coimbatore, Tamil Nadu: micromorphology and geochemical studies. Quaternary International 175: 140- 154.
  • Silva ML, Batezelli A, Ladeira FSB (2018). Genesis and paleoclimatic significance of palygorskite in the cretaceous paleosols of the Bauru Basin, Brazil. Catena 168: 110-128.
  • Singh BP, Lee YI, Pawar JS, Charak RS (2007). Biogenic features in calcretes developed on mudstone: examples from Paleogene sequences of the Himalaya, India. Sedimentary Geology 201: 49-156.
  • Srivastava P (2001). Paleoclimatic implications of pedogenic carbonates in Holocene soils of the Gangetic plains, India. Palaeogeography, Palaeoclimatology, Palaeoecology 172: 207- 222.
  • Strong GE, Giles JRA, Wright VP (1992). A Holocene calcrete from North Yorkshire, England: implications for interpreting palaeoclimates using calcretes. Sedimentology 39: 333-347.
  • Talbot MR, Kelts K (1990). Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic carbonrich lacustrine sediments. In: Katz BJ (editor). Lacustrine Basin Exploration: Case Studies and Modern Analogs. Tulsa, OK, USA: American Association of Petroleum Geologists, pp. 88- 112.
  • Talma AS, Netterberg F (1983). Stable isotope abundances in calcretes. In: Wilson RCL (editor). Residual Deposits: Surface Related Weathering Processes and Materials. London, UK: Geological Society of London Special Publications, pp. 221- 233.
  • Tanner LH (2010). Continental carbonates as indicators of paleoclimate. Developments in Sedimentology 62: 179-214.
  • Verrecchia EP, Le Coustumer MN (1996). Occurrence and genesis of palygorskite and associated clay minerals in a Pleistocene calcrete complex, Sde Boqer, Negev desert, Israel. Clay Minerals 31: 183-202.
  • Wang Y, Nahon D, Merino E (1994). Dynamic model of the genesis of calcretes replacing silicate rocks in semi-arid regions. Geochimica et Cosmochimica Acta 58: 5131-5145.
  • Ward JH (1963). Hierarchical grouping to optimize an objective function. Journal of American Statistical Association 69: 236- 244.
  • Wright VP, Platt NH, Marriott SB, Beck VH (1995). A classification of rhizogenic (root-formed) calcretes, with examples from the Upper Jurassic–Lower Cretaceous of Spain and Upper Cretaceous of southern France. Sedimentary Geology 100: 143-158.
  • Wright VP, Platt NH, Wimbledon WA (1988). Biogenic laminar calcretes: evidence of calcified root-mat horizons in paleosols. Sedimentology 35: 603-620.
  • Wright VP, Tucker ME (1991). Calcretes. Oxford, UK: Blackwell Scientific Publications.
  • Yalçın MN, Görür N (1983). Sedimentological evolution of the Adana Basin. In: Tekeli O, Göncüoğlu MC (editors). Geology of the Taurus Belt. Proceedings of International Tauride Symposium. Ankara, Turkey: Mineral Research and Exploration Institute of Turkey (MTA) Publications, pp. 165-172.
  • Yetiş C (1988). Reorganization of the Tertiary stratigraphy in the Adana Basin, southern Turkey. Newsletters on Stratigraphy 20: 43-58.
  • Yetiş C, Kelling G, Gökçen SL, Baroz F (1995). A revised stratigraphic framework for later Cenozoic sequences in the northeastern Mediterranean region. Geologische Rundschau 84: 794-812.
  • Zamanian K, Pustovoytov K, Kuzyakov Y (2016). Pedogenic carbonates: Forms and formation processes. Earth Science Reviews 157: 1-17.
  • Zhou J, Chafetz HS (2009). Biogenic caliches in Texas: the role of organisms and effect of climate. Sedimentary Geology 222: 207-225.