Glucosamine derived hydrothermal carbon electrodes for aqueous electrolyte energy storage systems

Glucosamine derived hydrothermal carbon electrodes for aqueous electrolyte energy storage systems

Nitrogen-doped porous hard carbons are synthesized by hydrothermal carbonization method (HTC) using glucosamine as biosource and treated at different carbonization temperatures in nitrogen environment (500, 750, 1000 °C). The electrochemical performances of hard carbons electrode materials for aqueous electrolyte sodium ion batteries are examined to observe the effect of two different voltage ranges (–0.8-0.0) V and (0.0-0.8) V in 1.0 M $Na_2 SO_4$ aqueous electrolyte. The best electrochemical performances are acquired for the 1000 °C treated glucosamine (GA-1000) porous carbon sample that provides ~96 F/g capacitance value in the negative voltage range (between –0.8 and 0.0) V. The sodium diffusion coefficient of the GA-1000 carbon calculated by electrochemical impedance measurements is found to be 1.5 × $10^{–14} cm^2$ /s

___

  • 1. Ellis BL, Nazar LF. Sodium and sodium-ion energy storage batteries. Current Opinion in Solid State and Materials Science 2012; 16 (4): 168–177. doi: 10.1016/j.cossms.2012.04.002
  • 2. Whitacre JF, Wiley T, Shanbhag S, Wenzhuo Y, Mohamed A et al. An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications. Journal of Power Sources 2012; 213: 255–264. doi: 10.1016/j.jpowsour.2012.04.018
  • 3. Herrington, R. Mining our green future. Nature Reviews Materials 2021; (6): 456–458. doi: 10.1038/s41578-021-00325-9
  • 4. Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nature Reviews Materials 2018; (3): 1-11. doi: 10.1038/natrevmats.2018.13
  • 5. Greim P, Solomon AA, Breyer C. Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation. Nature Communications 2020; 11 (1): 1–11. doi: 10.1038/s41467-020-18402-y
  • 6. Tarascon J. Is lithium the new gold? Nature Publishing Group 2010; 2 (6): 510. doi: 10.1038/nchem.680.
  • 7. Armand M, Tarascon JM. Building better batteries. Nature 2008; 451 (7179): 652–657. doi: 10.1038/451652a
  • 8. Tarascon JM. Na-ion versus Li-ion Batteries: Complementarity Rather than Competitiveness. Joule 2020; 4 (8): 1616–1620. doi: 10.1016/j. joule.2020.06.003
  • 9. Zhang L, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 2009; 38 (9): 2520–2531. doi: 10.1039/ b813846j
  • 10. Kim SW, Seo DH, Ma X, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Advanced Energy Material 2012;. 2 (7): 710–721. doi: 10.1002/aenm.201200026
  • 11. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nature Materials 2008; 7 (11): 845–854. doi: 0.1038/nmat2297
  • 12. Huang Y, Zheng Y, Li X, Adams F, Luo W et al. Electrode materials of sodium-ion batteries toward practical application. American Chemical Society Energy Letters 2018; 3 (7): 1604-1612. doi: 10.1021/acsenergylett.8b00609
  • 13. Titirici MM, Antonietti M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chemical Society Reviews 2010; 39 (1): 103–116. doi: 10.1039/b819318p
  • 14. Demir-Cakan R, Baccile N, Antonietti M, Titirici MM. Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid. Chemistry of Materials 2009; 21 (3): 484–490. doi: 10.1021/cm802141h
  • 15. Yu L, Falco C, Weber J, White RJ, Howe JY et al. Carbohydrate-derived hydrothermal carbons: A thorough characterization study. Langmuir 2012; 28 (33): 12373–12383. doi: 10.1021/la3024277
  • 16. Titirici MM, Antonietti M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chemical Society Reviews 2010; 39 (1): 103–116. doi: 10.1039/b819318p
  • 17. Cakan RD. Synthesis, characterization and applications of nanostructured materials using hydrothermal carbonization. PhD, Max Planck Institute for Colloid and Interfaces, Germany, 2009.
  • 18. Sevilla M, Fuertes AB. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009; 47 (9): 2281–2289. doi: 10.1016/j.carbon.2009.04.026
  • 19. Zhao L, Baccile N, Gross S, Zhang Y, Wei W et al. Sustainable nitrogen-doped carbonaceous materials from biomass derivatives. Carbon 2010; 48 (13): 3778–3787. doi: 10.1016/j.carbon.2010.06.040
  • 20. Demir E, Aydin M, Arie AA, Demir-Cakan R. Apricot shell derived hard carbons and their tin oxide composites as anode materials for sodium-ion batteries. Journal of Alloys and Compounds 2019; 788: 1093–1102. doi: 10.1016/j.jallcom.2019.02.264
  • 21. Arie AA, Tekin B, Demir E, Demir-Cakan R. Hard carbons derived from waste tea bag powder as anodes for sodium ion battery. Materials Technology 2019; 34 (9): 515–524. doi: 10.1080/10667857.2019.1586087
  • 22. Aydin M, Demir E, Unal B, Dursun B, Ahsen AS et al. Chitosan derived N-doped carbon coated SnO2 nanocomposite anodes for Na-ion batteries. Solid State Ionics 2019; 341 (3): 115035. doi: 10.1016/j.ssi.2019.115035
  • 23. Titirici MM, Alptekin H, Au H, Jensen ACS, Olsson E et al. Sodium storage mechanism investigations through structural changes in hard carbons. ACS Applied Energy Materials 2020; 3 (10): 9918–9927. doi: 10.1021/acsaem.0c01614
  • 24. Demir M, Tessema TD, Farghaly AA, Nyankson E, Saraswat SK et al. Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications. International Journal of Energy Research 2018; 42 (8): 2686–2700. doi: 10.1002/er.4058
  • 25. Demir-Cakan R, Palacin MR, Croguennec L. Rechargeable aqueous electrolyte batteries: From univalent to multivalent cation chemistry. Journal of Materials Chemistry A 2019; 7 (36): 20519–20539. doi: 10.1039/c9ta04735b
  • 26. Bin D, Wang F, Tamirat AG, Suo L, Wang Y et al. Progress in aqueous rechargeable sodium-ıon batteries. Advanced Energy Materials 2018; 8 (17): 1–31. doi: 10.1002/aenm.201703008
  • 27. Kim H, Hong J, Park KY, Kim H, Kim SW, Kang K. Aqueous rechargeable Li and Na ion batteries. Chemical Reviews 2014; 114 (23): 11788–11827. doi: 10.1021/cr500232y
  • 28. Zhang C, Hatzell KB, Boota M, Dyatkin B, Beidaghi M et al. Highly porous carbon spheres for electrochemical capacitors and capacitive flowable suspension electrodes. Carbon 2014; 77: 155–164. doi: 10.1016/j.carbon.2014.05.017
  • 29. Sevilla M, Yu L, Zhao L, Ania CO, Titirici MM. Surface modification of CNTs with N-doped carbon: An effective way of enhancing their performance in supercapacitors. ACS Sustainable Chemistry and Engineering 2014; 2 (4): 1049–1055. doi: 10.1021/sc500069h
  • 30. Lu Y, Zhang S, Yin J, Bai C, Zhang J et al. Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors. Carbon 2017; 124: 64–71. doi: 10.1016/j.carbon.2017.08.044
  • 31. Altinci OC, Demir M. Beyond conventional activating methods, a green approach for the synthesis of biocarbon and ıts supercapacitor electrode performance. Energy and Fuels 2020; 34 (6): 7658–7665. doi: 10.1021/acs.energyfuels.0c01103
  • 32. White RJ, Antonietti M, Titirici MM. Naturally inspired nitrogen doped porous carbon. Journal of Materials Chemistry 2009; 19 (45): 8645–8650. doi: 10.1039/b911528e
  • 33. Alothman ZA. A review: Fundamental aspects of silicate mesoporous materials. Materials 2012; 5 (12): 2874–2902. doi: 10.3390/ ma5122874
  • 34. Ada K, Sarıkaya Y, Alemdaroğlu T, Onal M. The investigation of the pore structure of fine alumina powders prepared for ceramic production by the technique of precipitation from solution. Communications Faculty of Sciences University of Ankara Series B. 2000; 46: 57–67.
  • 35. Baccile N, Antonietti M, Titirici MM. One-step hydrothermal synthesis of nitrogen-doped nanocarbons: Albumine directing the carbonization of glucose. ChemSusChem 2010; 3 (2): 246–253. doi: 10.1002/cssc.200900124
  • 36. Sung SL, Tseng CH, Chiang FK, Guo XJ, Liu XW, Shih HC. Novel approach to the formation of amorphous carbon nitride film on silicon by ECR-CVD. Thin Solid Films 1999; 340 (1): 169–174. doi: 10.1016/S0040-6090(98)01465-5
  • 37. Fay, D. L. Structure and Determination of Organic Compounds: Tables of Spectral Data Angewandte Chemie International Edition. Berlin Heidelberg: Springer, 2009.
  • 38. Laginhas C, Nabais JMV, Titirici MM. Activated carbons with high nitrogen content by a combination of hydrothermal carbonization with activation. Microporous and Mesoporous Materials 2016; 226: 125–132. doi: 10.1016/j.micromeso.2015.12.047
  • 39. Zhang L, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chemical Social Review 2009; 38 (7): 2520–2531.doi: 10.1039/ B813846J
  • 40. Zhao L, Baccile N, Gross S, Zhang Y, Wei W et al. Sustainable nitrogen-doped carbonaceous materials from biomass derivatives. Carbon 2010; 48 (13): 3778–3787. doi: 10.1016/j.carbon.2010.06.040
  • 41. Huang J. Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond. Electrochimica Acta 2018; 281: 170–188. doi: 10.1016/j.electacta.2018.05.136
  • 42. Tang K, Fu L, White RJ, Yu L, Titirici MM et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Advanced Energy Materials 2012; 2 (7): 873–877. doi: 10.1002/aenm.201100691
  • 43. Dogrusoz M, Demir-Cakan R. Mechanochemical synthesis of SnS anodes for sodium ion batteries. International Journal of Energy Research 2020; 44 (13): 10809–10820. doi: 10.1002/er.5735
  • 44. Xiao L, Cao Y, Henderson WA, Sushko ML, Shao Y et al. Hard carbon nanoparticles as high-capacity, high stability anodic materials for Na-ion batteries. Nano Energy 2016; 19 (1): 279-288. doi: 10.1016/j.nanoen.2015.10.034
  • 45. Wang P, Zhu X, Wang Q, Xu X et al. Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries. Journal of Materials Chemistry A 2017; 5 (12): 5761–5769. doi:10.1039/c7ta00639j
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Reductant free green synthesis of magnetically recyclable $MnFe_2O_4@SiO_2-Ag$ coreshell nanocatalyst for the direct reduction of organic dye pollutants

Gökhan ELMACI, Ali Serol ERTÜRK, Mustafa Ulvi GÜRBÜZ

Polyethylene glycol/silica and carbon black/silica xerogel composites as an adsorbent for $CO_2$ capture

Gülcihan GÜZEL KAYA

Glucosamine derived hydrothermal carbon electrodes for aqueous electrolyte energy storage systems

Rezan DEMİR ÇAKAN, Burcu ÜNAL

Cyclodextrin-active natural compounds in food applications: a review of antibacterial activity

Bing Ren TIAN, Yu Mei LIU

A flame retardant-hardener for epoxy resins: Synthesis, structural, and DFT studies ofthe $[Cu(H_2NC_2H_4NH_2)_2(H_2O)Cl]Cl$ complex

Borys MYKHALICHKO, Helen LAVRENYUK, Oleg MYKHALICHKO

Crystal structure and vibrational spectra of bis(2‒isobutyrylamidophenyl)amine: a redox noninnocent ligand

Emrah ASLANTATAR, Savita K. SHARMA, Omar VILLANUEVA, İlkay GÜMÜŞ, Hakan ARSLAN, Cora E. MACBETH

One-pot synthesis of graphene hydrogel-anchored cobalt-copper nanoparticles and their catalysis in hydrogen generation from ammonia borane

Ibtihel ZAIER, Önder METİN

Synthesis, characterization, COX1/2 inhibition and molecular modeling studies on novel 2-thio-diarylimidazoles

Melike KOÇOĞLU KALKAN, Sevde Nur BİLTEKİN KALELİ, Leyla YURTTAŞ, Şeref DEMİRAYAK, Zafer ŞAHİN, Barkın BERK, Ceysu BENDER

Study of the effectiveness of a presoaking process for reducing the additives migration from babies toys

Mohand Ouidir BOUSSOUM, Beatrice GEORGE, Aicha KENTAOUI, Stephane DUMARCAY, Ahmed BOUCHERIT, Hassiba LARIBI-HABCHI

Antiinflammatory photodynamic therapy potential of polyoxyethylene-substituted perylene diimide, nitrocatechol, and azo dye

Furkan AYAZ, Özgül HAKLI, Kasım OCAKOĞLU