One-pot synthesis of graphene hydrogel-anchored cobalt-copper nanoparticles and their catalysis in hydrogen generation from ammonia borane

One-pot synthesis of graphene hydrogel-anchored cobalt-copper nanoparticles and their catalysis in hydrogen generation from ammonia borane

We reported a facile one-pot synthesis of bimetallic CoCu nanoparticles (NPs) anchored on graphene hydrogel (GH-CoCu) as catalysts in hydrogen generation from the hydrolysis of ammonia borane (HAB). The presented novel one-pot method composed of the reduction of the mixture of graphene oxide, cobalt(II), and copper(II) acetate tetrahydrates by aqueous ethylene glycol solution in a teflon-coated stainless-steel reactor at 180 °C. The structure of the yielded GH-CoCu nanocatalysts was characterized by TEM, SEM, XRD, XPS, and ICP-MS. This is the first example of both the synthesis of bimetallic CoCu NPs anchored on GH and the testing of a hydrothermally prepared noble metal-free GH-bimetallic nanocomposites as catalysts for the HAB. The presented in situ synthesis protocol allowed us to prepare different metal compositions and investigating their catalysis in the AB hydrolysis, where the best catalytic activity was accomplished by the $GH-Co_{33}Cu_{67}$ nanocatalysts. The obtained GH-CoCu nanocatalysts exhibited a remarkable catalytic performance in the HAB by providing the highest hydrogen generation rate of 1015.809 ml H2 gcatalyst–1 min–1 at room temperature. This study has a potential to pave a way for the development of other GH-based bimetallic nanocatalysts that could be used in different applications.

___

  • 1. Moller KT, Jensen TR, Akiba E, Li HW. Hydrogen - A sustainable energy carrier. Progress in Natural Science-Materials International 2017; 27 (1): 34-40. doi: 10.1016/j.pnsc.2016.12.014
  • 2. Angelis-Dimakis A, Biberacher M, Dominguez J, Fiorese G, Gadocha S et al. Methods and tools to evaluate the availability of renewable energy sources. Renewable and Sustainable Energy Reviews 2011; 15 (2): 1182-1200. doi: 10.1016/j.rser.2010.09.049
  • 3. Zecca A, Chiari L. Fossil-fuel constraints on global warming. Energy Policy 2010; 38 (1): 1-3. doi: 10.1016/j.enpol.2009.06.068
  • 4. Abe JO, Popoola API, Ajenifuja E, Popoola OM. Hydrogen energy, economy and storage: Review and recommendation. International Journal of Hydrogen Energy 2019; 44 (29): 15072-15086. doi: 10.1016/j.ijhydene.2019.04.068
  • 5. Brandon NP, Kurban Z. Clean energy and the hydrogen economy. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 2017; 375 (2098). doi: 10.1098/rsta.2016.0400
  • 6. Rivard E, Trudeau M, Zaghib K. Hydrogen Storage for Mobility: A Review. Materials 2019; 12 (12): 1973.
  • 7. Navlani-García M, Mori K, Kuwahara Y, Yamashita H. Recent strategies targeting efficient hydrogen production from chemical hydrogen storage materials over carbon-supported catalysts. NPG Asia Materials 2018; 10 (4): 277-292. doi: 10.1038/s41427-018-0025-6
  • 8. Ni M. An Overview of Hydrogen Storage Technologies. Energy Exploration & Exploitation 2006; 24 (3): 197-209. doi: 10.1260/014459806779367455
  • 9. He T, Pachfule P, Wu H, Xu Q, Chen P. Hydrogen carriers. Nature Reviews Materials 2016; 1 (12). doi: 10.1038/natrevmats.2016.59
  • 10. Hamilton CW, Baker RT, Staubitz A, Manners I. B–N compounds for chemical hydrogen storage. Chemical Society Reviews 2009; 38 (1): 279-293. doi: 10.1039/B800312M
  • 11. Umegaki T, Yan J M, Zhang X B, Shioyama H, Kuriyama N et al. Boron- and nitrogen-based chemical hydrogen storage materials. International Journal of Hydrogen Energy 2009; 34 (5): 2303-2311. doi: 10.1016/j.ijhydene.2009.01.002
  • 12. Lu Z H, Yao Q, Zhang Z J, Yang Y W, Chen X S. Nanocatalysts for Hydrogen Generation from Ammonia Borane and Hydrazine Borane. Journal of Nanomaterials 2014; 2014. doi: 10.1155/2014/729029
  • 13. Moussa G, Moury R, Demirci U B, Sener T, Miele P. Boron-based hydrides for chemical hydrogen storage. International Journal of Energy Research 2013; 37 (8): 825-842. doi: 10.1002/er.3027
  • 14. Lu Z H, Xu Q. Recent progress in boron- and nitrogen-based chemical hydrogen storage. Functional Materials Letters 2012; 5 (1). doi: 10.1142/S1793604712300010
  • 15. Chandra M, Xu Q. A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia– borane. Journal of Power Sources 2006; 156 (2): 190-194. doi: 10.1016/j.jpowsour.2005.05.043
  • 16. Özkar S. Transition metal nanoparticle catalysts in releasing hydrogen from the methanolysis of ammonia borane. International Journal of Hydrogen Energy 2020; 45 (14): 7881-7891. doi: 10.1016/j.ijhydene.2019.04.125
  • 17. Yüksel Alpaydın C, Gülbay S K, Ozgur Colpan C. A review on the catalysts used for hydrogen production from ammonia borane. International Journal of Hydrogen Energy 2020; 45 (5): 3414-3434. doi: 10.1016/j.ijhydene.2019.02.181
  • 18. Chandra M, Xu Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. Journal of Power Sources 2007; 168 (1): 135-142. doi: 10.1016/j.jpowsour.2007.03.015
  • 19. Yao Q, Shi W, Feng G, Lu Z-H, Zhang X et al. Ultrafine Ru nanoparticles embedded in SiO2 nanospheres: Highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Journal of Power Sources 2014; 257: 293-299. doi: 10.1016/j.jpowsour.2014.01.122
  • 20. Xi PX, Chen FJ, Xie GQ, Ma C, Liu HY et al. Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Nanoscale 2012; 4 (18): 5597-5601. doi: 10.1039/c2nr31010d
  • 21. Cao N, Luo W, Cheng G. One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy 2013; 38 (27): 11964-11972. doi: 10.1016/j.ijhydene.2013.06.125
  • 22. Nişancı B, Turgut M, Sevim M, Metin Ö. Three-component cascade reaction in a tube: in situ synthesis of Pd nanoparticles supported on mpg-C3N4, dehydrogenation of ammonia borane and hydrogenation of nitroarenes. ChemistrySelect 2017; 2 (22): 6344-6349. doi: 10.1002/slct.201701188
  • 23. Aksoy M, Metin O. Pt Nanoparticles supported on mesoporous graphitic carbon nitride as catalysts for hydrolytic dehydrogenation of ammonia borane. Acs Applied Nano Materials 2020; 3 (7): 6836-6846. doi: 10.1021/acsanm.0c01208
  • 24. Akbayrak S, Ozkar S. Ruthenium(0) nanoparticles supported on xonotlite nanowire: a long-lived catalyst for hydrolytic dehydrogenation of ammonia-borane. Dalton Transactions 2014; 43 (4): 1797-1805. doi: 10.1039/c3dt52701h
  • 25. Rakap M, Özkar S. Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane. International Journal of Hydrogen Energy 2010; 35 (3): 1305-1312. doi: 10.1016/j.ijhydene.2009.11.056
  • 26. Rachiero GP, Demirci UB, Miele P. Facile synthesis by polyol method of a ruthenium catalyst supported on γ-Al2O3 for hydrolytic dehydrogenation of ammonia borane. Catalysis Today 2011; 170 (1): 85-92. doi: 10.1016/j.cattod.2011.01.040
  • 27. Eghbali P, Gurbuz MU, Erturk AS, Metin O. In situ synthesis of dendrimer-encapsulated palladium(0) nanoparticles as catalysts for hydrogen production from the methanolysis of ammonia borane. International Journal of Hydrogen Energy 2020; 45 (49): 26274-26285. doi: 10.1016/j.ijhydene.2019.10.225
  • 28. Sun D, Mazumder V, Metin Ö, Sun S. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles. ACS Nano 2011; 5 (8): 6458-6464. doi: 10.1021/nn2016666
  • 29. Rakap M, Abay B, Tunc N. Hydrolysis of ammonia borane and hydrazine borane by poly(N-vinyl-2-pyrrolidone)-stabilized CoPd nanoparticles for chemical hydrogen storage. Turkish Journal of Chemistry 2017; 41 (2): 221-232. doi: 10.3906/kim-1604-44
  • 30. Çiftci N S, Metin Ö. Monodisperse nickel–palladium alloy nanoparticles supported on reduced graphene oxide as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy 2014; 39 (33): 18863-18870. doi: 10.1016/j.ijhydene.2014.09.060
  • 31. Xu Q, Chandra M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia–borane at room temperature. Journal of Power Sources 2006; 163 (1): 364-370. doi: 10.1016/j.jpowsour.2006.09.043
  • 32. Yan J-M, Zhang X-B, Shioyama H, Xu Q. Room temperature hydrolytic dehydrogenation of ammonia borane catalyzed by Co nanoparticles. Journal of Power Sources 2010; 195 (4): 1091-1094. doi: 10.1016/j.jpowsour.2009.08.067
  • 33. Metin Ö, Mazumder V, Özkar S, Sun S. Monodisperse Nickel Nanoparticles and Their Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane. Journal of the American Chemical Society 2010; 132 (5): 1468-1469. doi: 10.1021/ja909243z
  • 34. Metin Ö, Dinç M, Eren ZS, Özkar S. Silica embedded cobalt(0) nanoclusters: Efficient, stable and cost effective catalyst for hydrogen generation from the hydrolysis of ammonia borane. International Journal of Hydrogen Energy 2011; 36 (18): 11528-11535. doi: 10.1016/j.ijhydene.2011.06.057
  • 35. Yu PJ, Lee MH, Hsu HM, Tsai HM, Yui WCY. Silica aerogel-supported cobalt nanocomposites as efficient catalysts toward hydrogen generation from aqueous ammonia borane. Rsc Advances 2015; 5 (18): 13985-13992. doi: 10.1039/c4ra14002h
  • 36. Hu J, Chen Z, Li M, Zhou X, Lu H. Amine-capped co nanoparticles for highly efficient dehydrogenation of ammonia borane. ACS Applied Materials & Interfaces 2014; 6 (15): 13191-13200. doi: 10.1021/am503037k
  • 37. Li Z, He T, Liu L, Chen W D, Zhang M et al. Covalent triazine framework supported non-noble metal nanoparticles with superior activity for catalytic hydrolysis of ammonia borane: from mechanistic study to catalyst design. Chemical Science 2017; 8 (1): 781-788. doi: 10.1039/c6sc02456d
  • 38. Zacho SL, Mielby J, Kegnaes S. Hydrolytic dehydrogenation of ammonia borane over ZIF-67 derived Co nanoparticle catalysts. Catalysis Science & Technology 2018; 8 (18): 4741-4746. doi: 10.1039/c8cy01500g
  • 39. Zhang X-L, Zhang D-X, Chang G-G, Ma X-C, Wu J, et al. Bimetallic (Zn/Co) MOFs-Derived Highly Dispersed Metallic Co/HPC for Completely Hydrolytic Dehydrogenation of Ammonia–Borane. Industrial & Engineering Chemistry Research 2019; 58 (17): 7209-7216. doi: 10.1021/acs.iecr.9b00897.
  • 40. Chen M, Xiong R, Cui X, Wang Q, Liu X. SiO2-Encompassed Co@N-Doped porous carbon assemblies as recyclable catalysts for efficient hydrolysis of ammonia borane. Langmuir 2019; 35 (3): 671-677. doi: 10.1021/acs.langmuir.8b03921
  • 41. Aranishi K, Zhu QL, Xu Q. Dendrimer-encapsulated cobalt nanoparticles as high-performance catalysts for the hydrolysis of ammonia borane. Chemcatchem 2014; 6 (5): 1375-1379. doi: 10.1002/cctc.201301006
  • 42. Zhao B, Liu J, Zhou L, Long D, Feng K et al. Probing the electronic structure of M-graphene oxide (M=Ni, Co, NiCo) catalysts for hydrolytic dehydrogenation of ammonia borane. Applied Surface Science 2016; 362: 79-85. doi: 10.1016/j.apsusc.2015.11.205
  • 43. Yang Y W, Zhang F, Wang H L, Yao Q L, Chen X S, et al. Catalytic hydrolysis of ammonia borane by cobalt nickel nanoparticles supported on reduced graphene oxide for hydrogen generation. Journal of Nanomaterials 2014; 2014. doi: 10.1155/2014/294350
  • 44. Men Y, Su J, Huang C, Liang L, Cai P et al. Three-dimensional nitrogen-doped graphene hydrogel supported Co-CeOx nanoclusters as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane. Chinese Chemical Letters 2018; 29 (11): 1671-1674. doi: 10.1016/j.cclet.2018.04.009
  • 45. Qiu XQ, Wu X, Wu YW, Liu QW, Huang CJ. The release of hydrogen from ammonia borane over copper/hexagonal boron nitride composites. Rsc Advances 2016; 6 (108): 106211-106217. doi: 10.1039/c6ra24000c
  • 46. Feng X, Chen X-M, Qiu P, Wu D, Hamilton EJM et al. Copper oxide hollow spheres: Synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy 2018; 43 (45): 20875-20881. doi: 10.1016/j.ijhydene.2018.09.158
  • 47. Yao Q, Lu Z-H, Zhang Z, Chen X, Lan Y. One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane. Scientific Reports 2014; 4 (1): 7597. doi: 10.1038/srep07597
  • 48. Zhang J, Wang Y, Zhu Y, Mi G, Du X et al. Shape-selective fabrication of Cu nanostructures: Contrastive study of catalytic ability for hydrolytically releasing H2 from ammonia borane. Renewable Energy 2018; 118: 146-151. doi: 10.1016/j.renene.2017.10.114
  • 49. Wang H, Zhou L, Han M, Tao Z, Cheng F et al. CuCo nanoparticles supported on hierarchically porous carbon as catalysts for hydrolysis of ammonia borane. Journal of Alloys and Compounds 2015; 651: 382-388. doi: 10.1016/j.jallcom.2015.08.139
  • 50. Yao Q, Lu Z-H, Wang Y, Chen X, Feng G. Synergetic Catalysis of Non-noble Bimetallic Cu–Co Nanoparticles Embedded in SiO2 Nanospheres in Hydrolytic Dehydrogenation of Ammonia Borane. The Journal of Physical Chemistry C 2015; 119 (25): 14167-14174. doi: 10.1021/acs.jpcc.5b02403
  • 51. Yang X, Li Q, Li L, Lin J, Yang X et al. CuCo binary metal nanoparticles supported on boron nitride nanofibers as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane. Journal of Power Sources 2019; 431: 135-143. doi: 10.1016/j.jpowsour.2019.05.038
  • 52. Ozay O, Inger E, Aktas N, Sahiner N. Hydrogen production from ammonia borane via hydrogel template synthesized Cu, Ni, Co composites. International Journal of Hydrogen Energy 2011; 36 (14): 8209-8216. doi: 10.1016/j.ijhydene.2011.04.140
  • 53. Du YS, Cao N, Yang L, Luo W, Cheng GZ. One-step synthesis of magnetically recyclable rGO supported Cu@Co core-shell nanoparticles: highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane and methylamine borane. New Journal of Chemistry 2013; 37 (10): 3035-3042. doi: 10.1039/c3nj00552f
  • 54. Yan JM, Wang ZL, Wang HL, Jiang Q. Rapid and energy-efficient synthesis of a graphene-CuCo hybrid as a high performance catalyst. Journal of Materials Chemistry 2012; 22 (22): 10990-10993. doi: 10.1039/c2jm31042b
  • 55. Xu M, Huai X, Zhang H. Highly dispersed CuCo nanoparticles supported on reduced graphene oxide as high-activity catalysts for hydrogen evolution from ammonia borane hydrolysis. Journal of Nanoparticle Research 2018; 20 (12): 329. doi: 10.1007/s11051-018-4429-6
  • 56. Song FZ, Zhu QL, Yang XC, Xu Q. Monodispersed CuCo nanoparticles supported on diamine-functionalized graphene as a non-noble metal catalyst for hydrolytic dehydrogenation of ammonia borane. Chemnanomat 2016; 2 (10): 942-945. doi: 10.1002/cnma.201600198
  • 57. Eghbali P, Nisanci B, Metin O. Graphene hydrogel supported palladium nanoparticles as an efficient and reusable heterogeneous catalysts in the transfer hydrogenation of nitroarenes using ammonia borane as a hydrogen source. Pure and Applied Chemistry 2018; 90 (2): 327-335. doi: 10.1515/pac-2017-0714
  • 58. Hummers WS, Offeman RE. Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958; 80 (6): 1339-1339. doi: 10.1021/ja01539a017
  • 59. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA et al. Layer-by-layer assembly of ultrathin composite films from micronsized graphite oxide sheets and polycations. Chemistry of Materials 1999; 11 (3): 771-778. doi: 10.1021/cm981085u
  • 60. Senol AM, Metin O, Onganer Y. A facile route for the preparation of silver nanoparticles-graphene oxide nanocomposites and their interactions with pyronin Y dye molecules. Dyes and Pigments 2019; 162: 926-933. doi: 10.1016/j.dyepig.2018.11.025
  • 61. Metin Ö, Kayhan E, Özkar S, Schneider JJ. Palladium nanoparticles supported on chemically derived graphene: An efficient and reusable catalyst for the dehydrogenation of ammonia borane. International Journal of Hydrogen Energy 2012; 37 (10): 8161-8169. doi: 10.1016/j.ijhydene.2012.02.128
  • 62. Can H, Metin Ö. A facile synthesis of nearly monodisperse ruthenium nanoparticles and their catalysis in the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Applied Catalysis B: Environmental 2012; 125: 304-310. doi: 10.1016/j.apcatb.2012.05.048
  • 63. Hu K, Xie X, Szkopek T, Cerruti M. Understanding Hydrothermally Reduced Graphene Oxide Hydrogels: From Reaction Products to Hydrogel Properties. Chemistry of Materials 2016; 28 (6): 1756-1768. doi: 10.1021/acs.chemmater.5b04713
  • 64. Chabot V, Higgins D, Yu AP, Xiao XC, Chen ZW et al. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy & Environmental Science 2014; 7 (5): 1564-1596. doi: 10.1039/c3ee43385d
  • 65. Fievet F, Ammar-Merah S, Brayner R, Chau F, Giraud M et al. The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chemical Society Reviews 2018; 47 (14): 5187-5233. doi: 10.1039/c7cs00777a
  • 66. Lim HN, Huang NM, Lim SS, Harrison I, Chia CH. Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. International Journal of Nanomedicine 2011; 6: 1817-1823. doi: 10.2147/Ijn.S23392
  • 67. Hu K, Xie X, Cerruti M, Szkopek T. Controlling the Shell Formation in Hydrothermally Reduced Graphene Hydrogel. Langmuir 2015; 31 (20): 5545-5549. doi: 10.1021/acs.langmuir.5b00508
  • 68. Wasalathilake KC, Galpaya DGD, Ayoko GA, Yan C. Understanding the structure-property relationships in hydrothermally reduced graphene oxide hydrogels. Carbon 2018; 137: 282-290. doi: 10.1016/j.carbon.2018.05.036
  • 69. Ma D, Xie J, Li J, Liu S, Wang F et al. Synthesis and hydrogen reduction of nano-sized copper tungstate powders produced by a hydrothermal method. International Journal of Refractory Metals and Hard Materials 2014; 46: 152-158. doi: 10.1016/j.ijrmhm.2014.06.006
  • 70. Zhou L, Wang SZ, Ma HH, Ma S X, Xu DH et al. Size-controlled synthesis of copper nanoparticles in supercritical water. Chemical Engineering Research & Design 2015; 98: 36-43. doi: 10.1016/j.cherd.2015.04.004
  • 71. Xu Y, Sheng K, Li C, Shi G. Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano 2010; 4 (7): 4324-4330. doi: 10.1021/nn101187z
  • 72. Zhang L, Chen G, Hedhili MN, Zhang H, Wang P. Three-dimensional assemblies of graphene prepared by a novel chemical reductioninduced self-assembly method. Nanoscale 2012; 4 (22): 7038-7045. doi: 10.1039/C2NR32157B
  • 73. Zhang W, He W, Jing X. Preparation of a Stable Graphene Dispersion with High Concentration by Ultrasound. The Journal of Physical Chemistry B 2010; 114 (32): 10368-10373. doi: 10.1021/jp1037443
  • 74. Li J, Zhu Q L, Xu Q. Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal-organic frameworks: synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation. Catalysis Science & Technology 2015; 5 (1): 525-530. doi: 10.1039/c4cy01049c
  • 75. Bulut A, Yurderi M, Ertas İ E, Celebi M, Kaya M et al. Carbon dispersed copper-cobalt alloy nanoparticles: A cost-effective heterogeneous catalyst with exceptional performance in the hydrolytic dehydrogenation of ammonia-borane. Applied Catalysis B: Environmental 2016; 180: 121-129. doi: 10.1016/j.apcatb.2015.06.021
  • 76. Schwaab M, Pinto JC. Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1: Problems involving one kinetic constant. Chemical Engineering Science 2007; 62 (10): 2750-2764. doi: 10.1016/j.ces.2007.02.020
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Determination of characterization, antibacterial and drug release properties of POSSbased film synthesized with sol-gel technique

Süleyman KÖYTEPE, İdil KARACA AÇARI, Turgay SEÇKİN, Burhan ATEŞ, İsmet YILMAZ

Novel vic-dioximes: synthesis, structure characterization, and antimicrobial activity evaluation

Dumitru URECHE, Ion BULHAC, Alexandru CIOCARLAN, Daniel ROSHCA, Lucian LUPASCU, Paulina BOUROSH

Green dehydrogenation of dimethylamine borane catalyzed by cheaply copper(0) nanocatalysts without any stabilizer at nearly room temperature

Ali ÖZDEMİR, Sibel DUMAN

Antiinflammatory photodynamic therapy potential of polyoxyethylene-substituted perylene diimide, nitrocatechol, and azo dye

Furkan AYAZ, Özgül HAKLI, Kasım OCAKOĞLU

Volatile constituents of three Thymus sipyleus Boiss. subspecies from different sites in Turkey

Hale Gamze AĞALAR, Mine KÜRKÇÜOGLU, Kemal Hüsnü Can BAŞER, Kenan TURGUT

Novel surfactant stabilized PLGA cisplatin nanoparticles for drug delivery applications

Mohammad Salim AKHTER, Samra UMAR, Amir WASEEM, Manzar ZAHRA

Puerarin-coated gold nanoparticles (PUE-AuNPs) synthesized via green synthetic route: a new colorimetric probe for the detection of ciprofloxacin

Muhammad Raza SHAH, Tasneem ZEHRA, Faiqa AHSAN, Muhammad Ali VERSIANI, Sana WAHID, Sajid JAHANGIR

Cyclodextrin-active natural compounds in food applications: a review of antibacterial activity

Bing Ren TIAN, Yu Mei LIU

A flame retardant-hardener for epoxy resins: Synthesis, structural, and DFT studies ofthe $[Cu(H_2NC_2H_4NH_2)_2(H_2O)Cl]Cl$ complex

Borys MYKHALICHKO, Helen LAVRENYUK, Oleg MYKHALICHKO

Crystal structure and vibrational spectra of bis(2‒isobutyrylamidophenyl)amine: a redox noninnocent ligand

Emrah ASLANTATAR, Savita K. SHARMA, Omar VILLANUEVA, İlkay GÜMÜŞ, Hakan ARSLAN, Cora E. MACBETH