Polyethylene glycol/silica and carbon black/silica xerogel composites as an adsorbent for $CO_2$ capture

Polyethylene glycol/silica and carbon black/silica xerogel composites as an adsorbent for $CO_2$ capture

Mesoporous polyethylene glycol (PEG)/silica and carbon black (CB)/silica xerogel composites were prepared by the solgel method as an adsorbent for $CO_2$ adsorption. The $CO_2$ adsorption process was carried out under pure $CO_2$ atmosphere at room temperature in addition to ambient air. The xerogel composites with high surface area and pore volume showed better $CO_2$ adsorption capacity than the pure silica xerogel. After modifying samples with propylene diamine using the wet impregnation method, an increase in$CO_2$ adsorption capacity was observed for the samples except CB/silica xerogel composite. The highest $CO_2$ adsorption capacity was determined as approximately 0.80 mmol/g for amine modified PEG/silica xerogel composite under pure$CO_2$ exposure. According to the adsorption-desorption cyclic stability test, it was clear that the stable samples were obtained, which is a desirable property for all $CO_2$ adsorbents. The promising findings revealed that the xerogel composites can be efficiently used as a $CO_2$ adsorbent instead of conventional materials in many $CO_2$ adsorption applications. Additionally, it can be expected that the xerogel composites can provide an effective adsorption process without high-cost, complexity, corrosion, and toxicity problems.

___

  • 1. Guo X, Ding L, Kanamori K, Nakanishi K, Yang H. Functionalization of hierarchically porous silica monoliths with polyethyleneimine (PEI) for $CO_2$ adsorption. Microporous and Mesoporous Materials 2017; 245: 51-7. doi: 10.1016/j.micromeso.2017.02.076
  • 2. Chen C, Kim J, Ahn W-S. $CO_2$ capture by amine-functionalized nanoporous materials: A review. Korean Journal of Chemical Engineering 2014; 31 (11): 1919-34. doi: 10.1007/s11814-014-0257-2
  • 3. Patel HA, Byun J, Yavuz CT. Carbon Dioxide Capture Adsorbents: Chemistry and Methods. ChemSusChem 2017; 10 (7): 1303-17. doi:10.1002/cssc.201601545
  • 4. Alhassan M, Andrew I, Auta M, Umaru M, Garba MU et al. Comparative studies of $CO_2$ capture using acid and base modified activated carbon from sugarcane bagasse. Biofuels 2017: 1-10. doi: 10.1080/17597269.2017.1306680
  • 5. Yang H, Xu Z, Fan M, Gupta R, Slimane RB et al. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences 2008; 20 (1): 14-27. doi: 10.1016/s1001-0742(08)60002-9
  • 6. Yang Y, Chuah CY, Gong H, Bae T-H. Robust microporous organic copolymers containing triphenylamine for high pressure $CO_2$ capture application. Journal of $CO_2$ Utilization 2017; 19: 214-20. doi: 10.1016/j.jcou.2017.03.020
  • 7. Singh J, Bhunia H, Basu S. Synthesis of porous carbon monolith adsorbents for carbon dioxide capture: Breakthrough adsorption study. Journal of the Taiwan Institute of Chemical Engineers 2018; 89: 140-50. doi: 10.1016/j.jtice.2018.04.031
  • 8. Bhosale RR, Kumar A, AlMomani F. Kinetics of reactive absorption of $CO_2$ using aqueous blend of potassium carbonate, ethylaminoethanol, and N-methyl-2-Pyrollidone (APCEN solvent). Journal of the Taiwan Institute of Chemical Engineers 2018; 89: 191-7. doi: 10.1016/j. jtice.2018.05.016
  • 9. Arora A, Kumar A, Bhattacharjee G, Kumar P, Balomajumder C. Effect of different fixed bed media on the performance of sodium dodecyl sulfate for hydrate based $CO_2$ capture. Materials & Design 2016; 90: 1186-91. doi: 10.1016/j.matdes.2015.06.049
  • 10. Bhowmik S, Jadhav RG, Das AK. Nanoporous conducting covalent organic polymer (COP) nanostructures as metal-free high performance visible-light photocatalyst for water treatment and enhanced $CO_2$ capture. The Journal of Physical Chemistry C 2017; 122 (1): 274-84. doi: 10.1021/acs.jpcc.7b07709
  • 11. Zukal A, Kubů M, Pastva J. Two-dimensional zeolites: Adsorption of carbon dioxide on pristine materials and on materials modified by magnesium oxide. Journal of $CO_2$ Utilization 2017; 21: 9-16. doi: 10.1016/j.jcou.2017.06.013
  • 12. Panek R, Wdowin M, Franus W, Czarna D, Stevens LA et al. Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion $CO_2$ capture. Journal of $CO_2$ Utilization 2017; 22: 81-90. doi: 10.1016/j.jcou.2017.09.015
  • 13. Lin Y-F, Lin Y-J, Lee C-C, Lin K-YA, Chung T-W, Tung K-L. Synthesis of mechanically robust epoxy cross-linked silica aerogel membranes for $CO_2$ capture. Journal of the Taiwan Institute of Chemical Engineers 2018; 87: 117-22. doi: 10.1016/j.jtice.2018.03.019
  • 14. Sanz-Moral LM, Romero A, Holz F, Rueda M, Navarrete A et al. Tuned $Pd/SiO_2$ aerogel catalyst prepared by different synthesis techniques. Journal of the Taiwan Institute of Chemical Engineers 2016; 65: 515-21. doi: 10.1016/j.jtice.2016.05.030
  • 15. Ganesan K, Dennstedt A, Barowski A, Ratke L. Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Materials & Design 2016; 92: 345-55. doi: 10.1016/j.matdes.2015.12.041
  • 16. Affandi S, Setyawan H, Winardi S, Purwanto A, Balgis R. A facile method for production of high-purity silica xerogels from bagasse ash. Advanced Powder Technology 2009; 20 (5): 468-72. doi: 10.1016/j.apt.2009.03.008
  • 17. Sun S-Y, Ge Y-Y, Tian Z-B, Zhang J, Xie Z-p. A simple method to ameliorate hierarchical porous structures of $SiO_2$ xerogels through adjusting water contents. Advanced Powder Technology 2017; 28 (10): 2496-502. doi: 10.1016/j.apt.2017.06.019
  • 18. Serna-Guerrero R, Da’na, E, Sayari, A. New insights into the interactions of $CO_2$ with amine-functionalized silica. Industrial & Engineering Chemistry Research 2008; 47: 9406-12. doi: 10.1021/ie801186g
  • 19. Jaiboon V, Yoosuk B, Prasassarakich P. Amine modified silica xerogel for $H_2$ S removal at low temperature. Fuel Processing Technology 2014; 128: 276-82. doi: 10.1016/j.fuproc.2014.07.032
  • 20. Zhao C, Guo Y, Li W, Bu C, Wang X et al. Experimental and modeling investigation on $CO_2$ sorption kinetics over $K_2CO_3$ -modified silica aerogels. Chemical Engineering Journal 2017; 312: 50-8. doi: 10.1016/j.cej.2016.11.121
  • 21. Santos A, Ajbary M, Morales-Florez V, Kherbeche A, Pinero M et al. Larnite powders and larnite/silica aerogel composites as effective agents for $CO_2$ sequestration by carbonation. Journal of Hazardous Materials 2009; 168 (2-3): 1397-403. doi: 10.1016/j.jhazmat.2009.03.026
  • 22. Santos A, Toledo-Fernández JA, Mendoza-Serna R, Gago-Duport L, de la Rosa-Fox N et al. Chemically active silica aerogel−wollastonite composites for $CO_2$ fixation by carbonation reactions. Industrial & Engineering Chemistry Research 2007; 46 (1): 103-7. doi: 10.1021/ ie0609214
  • 23. Zukal A, Pastva J, Čejka J. MgO-modified mesoporous silicas impregnated by potassium carbonate for carbon dioxide adsorption. Microporous and Mesoporous Materials 2013; 167: 44-50. doi: 10.1016/j.micromeso.2012.05.026
  • 24. Huang HY, Yang, R.T., Chinn, D., Munson, C.L. Amine-Grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Industrial & Engineering Chemistry Research 2003; 42: 2427-33. doi: 10.1021/ie020440u
  • 25. Witoon T, Tatan N, Rattanavichian P, Chareonpanich M. Preparation of silica xerogel with high silanol content from sodium silicate and its application as $CO_2$ adsorbent. Ceramics International 2011; 37 (7): 2297-303. doi: 10.1016/j.ceramint.2011.03.020
  • 26. Echeverría JC, Estella J, Barbería V, Musgo J, Garrido JJ. Synthesis and characterization of ultramicroporous silica xerogels. Journal of NonCrystalline Solids 2010; 356 (6-8): 378-82. doi: 10.1016/j.jnoncrysol.2009.11.044
  • 27. Linneen NN, Pfeffer R, Lin YS. Amine Distribution and Carbon Dioxide Sorption Performance of Amine Coated Silica Aerogel Sorbents: Effect of Synthesis Methods. Industrial & Engineering Chemistry Research 2013; 52 (41): 14671-9. doi: 10.1021/ie401559u
  • 28. Linneen N, Pfeffer R, Lin YS. $CO_2$ capture using particulate silica aerogel immobilized with tetraethylenepentamine. Microporous and Mesoporous Materials 2013; 176: 123-31. doi: 10.1016/j.micromeso.2013.02.052
  • 29. Han H, Wei W, Jiang Z, Lu J, Zhu J, Xie J. Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016; 509: 539-49. doi: 10.1016/j.colsurfa.2016.09.056
  • 30. Durães L, Maia A, Portugal A. Effect of additives on the properties of silica based aerogels synthesized from methyltrimethoxysilane (MTMS). The Journal of Supercritical Fluids 2015; 106: 85-92. doi: 10.1016/j.supflu.2015.06.020
  • 31. Meng X-M, Zhang X-J, Lu C, Pan Y-F, Wang G-S. Enhanced absorbing properties of three-phase composites based on a thermoplasticceramic matrix $(BaTiO_3 + PVDF)$ and carbon black nanoparticles. Journal of Materials Chemistry A 2014; 2 (44): 18725-30. doi: 10.1039/ c4ta04493b
  • 32. Mosquera MJ, Santos DMdl, Valdez-Castro L, Esquivias L. New route for producing crack-free xerogels: Obtaining uniform pore size. Journal of Non-Crystalline Solids 2008; 354 (2-9): 645-50. doi: 10.1016/j.jnoncrysol.2007.07.095
  • 33. Musgo J, Echeverría JC, Estella J, Laguna M, Garrido JJ. Ammonia-catalyzed silica xerogels: Simultaneous effects of pH, synthesis temperature, and ethanol:TEOS and water:TEOS molar ratios on textural and structural properties. Microporous and Mesoporous Materials 2009; 118 (1-3): 280-7. doi: 10.1016/j.micromeso.2008.08.044
  • 34. Li M, Jiang H, Xu D, Hai O, Zheng W. Low density and hydrophobic silica aerogels dried under ambient pressure using a new co-precursor method. Journal of Non-Crystalline Solids 2016; 452: 187-93. doi: 10.1016/j.jnoncrysol.2016.09.001
  • 35. Pisal AA, Rao AV. Comparative studies on the physical properties of TEOS, TMOS and $Na_2SiO_3$ based silica aerogels by ambient pressure drying method. Journal of Porous Materials 2016; 23 (6): 1547-56. doi: 10.1007/s10934-016-0215-y
  • 36. Durães L, Ochoa M, Rocha N, Patrício R, Duarte N et al. Effect of the Drying Conditions on the Microstructure of Silica Based Xerogels and Aerogels. Journal of Nanoscience and Nanotechnology 2012; 12 (8): 6828-34. doi: 10.1166/jnn.2012.4560
  • 37. Wörmeyer K, Smirnova I. Adsorption of $CO_2$ , moisture and ethanol at low partial pressure using aminofunctionalised silica aerogels. Chemical Engineering Journal 2013; 225: 350-7. doi: 10.1016/j.cej.2013.02.022
  • 38. Witoon T. Polyethyleneimine-loaded bimodal porous silica as low-cost and high-capacity sorbent for CO2 capture. Materials Chemistry and Physics 2012; 137 (1): 235-45. doi: 10.1016/j.matchemphys.2012.09.014
  • 39. Kong Y, Jiang G, Wu Y, Cui S, Shen X. Amine hybrid aerogel for high-efficiency $CO_2$ capture: Effect of amine loading and $CO_2$ concentration. Chemical Engineering Journal 2016; 306: 362-8. doi: 10.1016/j.cej.2016.07.092
  • 40. Huang WL, Cui SH, Liang KM, Yuan ZF, Gu SR. Evolution of pore and surface characteristics of silica xerogels during calcining. Journal of Physics and Chemistry of Solids 2002; 63: 645-50. doi: 10.1016/S0022-3697(01)00207-4
  • 41. Suchithra PS, Vazhayal L, Peer Mohamed A, Ananthakumar S. Mesoporous organic–inorganic hybrid aerogels through ultrasonic assisted sol–gel intercalation of silica–PEG in bentonite for effective removal of dyes, volatile organic pollutants and petroleum products from aqueous solution. Chemical Engineering Journal 2012; 200-202: 589-600. doi: 10.1016/j.cej.2012.06.083
  • 42. Hilonga A, Kim J-K, Sarawade PB, Kim HT. Low-density TEOS-based silica aerogels prepared at ambient pressure using isopropanol as the preparative solvent. Journal of Alloys and Compounds 2009; 487 (1-2): 744-50. doi: 10.1016/j.jallcom.2009.08.055
  • 43. Ślosarczyk A, Wojciech S, Piotr Z, Paulina J. Synthesis and characterization of carbon fiber/silica aerogel nanocomposites. Journal of NonCrystalline Solids 2015; 416: 1-3. doi: 10.1016/j.jnoncrysol.2015.02.013
  • 44. Kim K-H, Lee, DY, Oh, Y-J. Ambient drying silica aerogel coatings modified with polyethylene glycol. Journal of Ceramic Processing Research 2017; 18 (1): 55-8.
  • 45. Kow K-W, Yusoff R, Aziz ARA, Abdullah EC. Bamboo leaf aerogel opacified with activated carbon. Transactions of the Indian Ceramic Society 2016; 75 (3): 175-80. doi: 10.1080/0371750x.2016.1197047
  • 46. Linneen NN, Pfeffer R, Lin YS. $CO_2$ adsorption performance for amine grafted particulate silica aerogels. Chemical Engineering Journal 2014; 254: 190-7. doi: 10.1016/j.cej.2014.05.087
  • 47. Ren H, Zhu J, Bi Y, Xu Y, Zhang L. One-step fabrication of transparent hydrophobic silica aerogels via in situ surface modification in drying process. Journal of Sol-Gel Science and Technology 2016; 80 (3): 635-41. doi: 10.1007/s10971-016-4146-5
  • 48. Leventis N, Sotiriou-Leventis, C., Zhang, G., Rawashdeh, A.M. Nanoengineering Strong Silica Aerogels. Nano Letters 2002; 2 (9): 957-60. doi: 10.1021/nl025690e
  • 49. Lin Y-F, Kuo J-W. Mesoporous bis(trimethoxysilyl)hexane (BTMSH)/tetraethyl orthosilicate (TEOS)-based hybrid silica aerogel membranes for $CO_2$ capture. Chemical Engineering Journal 2016; 300: 29-35. doi: 10.1016/j.cej.2016.04.119
  • 50. Meth S, Goeppert A, Prakash GKS, Olah GA. Silica nanoparticles as supports for regenerable $CO_2$ Sorbents. Energy & Fuels 2012; 26 (5): 3082-90. doi: 10.1021/ef300289k
  • 51. Choi S, Drese JH, Eisenberger PM, Jones CW. Application of amine-tethered solid sorbents for direct $CO_2$ capture from the ambient air. Environmental Science & Technology 2011; 45 (6): 2420-7. doi: 10.1021/es102797w
  • 52. Dibenedetto A, Pastore C, Fragale C, Aresta M. Hybrid materials for CO2 uptake from simulated flue gases: xerogels containing diamines. ChemSusChem 2008; 1 (8-9): 742-5. doi: 10.1002/cssc.200800090
  • 53. D’Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition 2010; 49 (35): 6058-82. doi: 10.1002/anie.201000431
  • 54. Plaza MG, Pevida C, Arenillas A, Rubiera F, Pis JJ. $CO_2$ capture by adsorption with nitrogen enriched carbons. Fuel 2007; 86 (14): 2204-12. doi: 10.1016/j.fuel.2007.06.001
  • 55. Adeniran B, Mokaya R. Is N-doping in porous carbons beneficial for $CO_2$ Storage? experimental demonstration of the relative effects of pore size and N-doping. Chemistry of Materials 2016; 28 (3): 994-1001. doi: 10.1021/acs.chemmater.5b05020
  • 56. Gebald C, Wurzbacher JA, Tingaut P, Steinfeld A. Stability of amine-functionalized cellulose during temperature-vacuum-swing cycling for $CO_2$ capture from air. Environmental Science & Technology 2013; 47 (17): 10063-70. doi: 10.1021/es401731p
  • 57. Kong Y, Shen X, Cui S. Amine hybrid zirconia/silica composite aerogel for low-concentration $CO_2$ capture. Microporous and Mesoporous Materials 2016; 236: 269-76. doi: 10.1016/j.micromeso.2016.08.036
  • 58. Rezaei F, Lively RP, Labreche Y, Chen G, Fan Y et al. Aminosilane-grafted polymer/silica hollow fiber adsorbents for $CO_2$ capture from flue gas. ACS Applied Materials & Interfaces 2013; 5 (9): 3921-31. doi: 10.1021/am400636c
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

The removal of chromium (VI) from tannery waste using Spirulina sp. immobilized silica gel

Nais Pinta ADETYA, Uma Fadzilia ARIFIN, Emiliana ANGGRIYANI

Polyethylene glycol/silica and carbon black/silica xerogel composites as an adsorbent for $CO_2$ capture

Gülcihan GÜZEL KAYA

Novel surfactant stabilized PLGA cisplatin nanoparticles for drug delivery applications

Mohammad Salim AKHTER, Samra UMAR, Amir WASEEM, Manzar ZAHRA

Reductant free green synthesis of magnetically recyclable $MnFe_2O_4@SiO_2-Ag$ coreshell nanocatalyst for the direct reduction of organic dye pollutants

Gökhan ELMACI, Ali Serol ERTÜRK, Mustafa Ulvi GÜRBÜZ

Synthesis and application of colloidal CdS quantum dots as interface modification material in perovskite solar cells

Esma YENEL

Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique

Mustafa SOYLAK, Muhammad Saqaf JAGIRANI

Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method

Mehmet AKALIN, Derya SALTIK ÇİRKİN, Erhan SANCAK, Erkan İŞGÖREN, Onur ATAK, Ali BEYİT, Metin YÜKSEK

In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue

Selin GÜMRÜKÇÜ, Belkıs USTAMEHMETOĞLU, Mukaddes ÖZÇEŞMECİ, Esin HAMURYUDAN, Esma SEZER

Synthesis, characterization, COX1/2 inhibition and molecular modeling studies on novel 2-thio-diarylimidazoles

Melike KOÇOĞLU KALKAN, Sevde Nur BİLTEKİN KALELİ, Leyla YURTTAŞ, Şeref DEMİRAYAK, Zafer ŞAHİN, Barkın BERK, Ceysu BENDER

Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy

Yücel KOÇ, Uğur MORALI, Salim EROL, Hüseyin AVCI