Reductant free green synthesis of magnetically recyclable $MnFe_2O_4@SiO_2-Ag$ coreshell nanocatalyst for the direct reduction of organic dye pollutants

Reductant free green synthesis of magnetically recyclable $MnFe_2O_4@SiO_2-Ag$ coreshell nanocatalyst for the direct reduction of organic dye pollutants

The present paper describes in situ green immobilization of silver nanoparticles on $MnFe_2O_4@SiO_2$ nanospheres using Epilobium parviflorum (EP) without using any other toxic chemicals and reducing or stabilizing agents. The morphology, composition, and magnetic properties of the resulting $MnFe_2O_4@SiO_2-Ag$ core-shell nanocatalyst were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The catalytic performance of the synthesized $MnFe_2O_4@SiO_2-Ag$ was employed on the organic pollutants dyes such as rhodamine B (RhB) and methylene blue (MB). The results revealed significant reduction performances for the MB (116.28 s–1 g–1) and RhB (27.12 s–1 g–1) over the existing literature. Furthermore, the $MnFe_2O_4@SiO_2-Ag$ exhibited high stability for the completion of the reduction of RhB between the reaction times of 13.1 (first) and 19.8 min (final) with the 100% decolorization efficiency even after several cycles with an excellent magnetic separation. Overall, this work demonstrates a simple and practical green synthetic route for the preparation of magnetic recyclable core-shell nanocatalyst that can be a good candidate for the treatment of organic contaminants in wastewater adhering to green chemistry principles for the environmental pollution concerns.

___

  • 1. Mani S, Chowdhary P, Bharagava RN. Textile wastewater dyes: Toxicity profile and treatment approaches. Emerging and eco-friendly approaches for waste management 2018; 219-244. doi: 10.1007/978-981-10-8669-4_11
  • 2. Mondal P, Baksi S, Bose D. Study of Environmental Issues in Textile Industries and Recent Wastewater Treatment Technology. World Scientific News 2017; 61: 98-109.
  • 3. Crini G. Studies on adsorption of dyes on beta-cyclodextrin polymer. Bioresource Technology 2003; 90 (2): 193–198. doi: 10.1016/S0960-8524(03)00111-1
  • 4. Wijetunga S, Li X-F, Jian C. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor. Journal of Hazardous Materials 2010; 177 (1-3): 792–798. doi: 10.1016/j.jhazmat.2009.12.103
  • 5. Kavimani T, Senthilkumar PL. Anaerobic Treatment of Dye Wastewater using Upflow Anaerobic Sludge Blanket Reactor. International Journal of Innovative Technology and Exploring Engineering 2019; 8 (12): 3178–3181. doi: 10.35940/ijitee.L3044.1081219
  • 6. Ertürk AS. PAMAM dendrimer-enhanced removal of cobalt ions based on multiple-response optimization using response surface methodology. Journal of the Iranian Chemical Society 2018; 15 (8): 1685–1698. doi: 10.1007/s13738-018-1366-3
  • 7. Ambashta RD, Sillanpää M. Water purification using magnetic assistance: A review. Journal of Hazardous Materials 2010; 180 (1-3): 38– 49. doi: 10.1016/j.jhazmat.2010.04.105
  • 8. Chan SHS, Yeong Wu T, Juan JC, Teh CY. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. Journal of Chemical Technology & Biotechnology 2011; 86 (9): 1130–1158. doi: 10.1002/jctb.2636
  • 9. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety 2018; 148: 702–712. doi: 10.1016/j.ecoenv.2017.11.034
  • 10. Jana NR, Wang ZL, Pal T. Redox Catalytic Properties of Palladium Nanoparticles: Surfactant and Electron Donor−Acceptor Effects. Langmuir 2000; 16 (6): 2457–2463. doi: 10.1021/la990507r
  • 11. Jana NR, Pal T. Redox Catalytic Property of Still-Growing and Final Palladium Particles: A Comparative Study. Langmuir 1999; 15 (10): 3458–3463. doi: 10.1021/la981512i
  • 12. Shimizu K, Sawabe K, Satsuma A. Unique catalytic features of Ag nanoclusters for selective NOx reduction and green chemical reactions. Catalysis Science & Technology 2011; 1 (3): 331-341. doi: 10.1039/c0cy00077a
  • 13. Holmes AB, Gu FX. Emerging nanomaterials for the application of selenium removal for wastewater treatment. Environmental Science: Nano 2016; 3 (5): 982–996. doi: 10.1039/C6EN00144K
  • 14. Nasrollahzadeh M, Mohammad Sajadi S, Rostami-Vartooni A, Khalaj M. Green synthesis of Pd/Fe 3 O 4 nanoparticles using Euphorbia condylocarpa M. bieb root extract and their catalytic applications as magnetically recoverable and stable recyclable catalysts for the phosphine-free Sonogashira and Suzuki coupling reactions. Journal of Molecular Catalysis A: Chemical 2015; 396: 31–39. doi: 10.1016/j.molcata.2014.09.029
  • 15. Veisi H, Gholami J, Ueda H, Mohammadi P, Noroozi M. Magnetically palladium catalyst stabilized by diaminoglyoxime-functionalized magnetic Fe3O4 nanoparticles as active and reusable catalyst for Suzuki coupling reactions. Journal of Molecular Catalysis A: Chemical 2015; 396: 216–223. doi: 10.1016/j.molcata.2014.10.012
  • 16. Baig RBN, Varma RS. Magnetically retrievable catalysts for organic synthesis. Chemical Communications 2013; 49: 752–770. doi: 10.1039/C2CC35663E
  • 17. Ertürk AS, Elmacı G. PAMAM Dendrimer Functionalized Manganese Ferrite Magnetic Nanoparticles: Microwave-Assisted Synthesis and Characterization. Journal of Inorganic and Organometallic Polymers and Materials 2018; 28 (5): 2100–2107. doi: 10.1007/s10904-018- 0865-0
  • 18. Bonyasi F, Hekmati M, Veisi H. Preparation of core/shell nanostructure Fe3O4@PEG400-SO3H as heterogeneous and magnetically recyclable nanocatalyst for one-pot synthesis of substituted pyrroles by Paal-Knorr reaction at room temperature. Journal of Colloid and Interface Science 2017; 496: 177–187. doi: 10.1016/j.jcis.2017.02.023
  • 19. Deng Y-H, Wang C-C, Hu J-H, Yang W-L, Fu S-K. Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005; 262 (1-3): 87–93. doi: 10.1016/j.colsurfa.2005.04.009
  • 20. Mohammadi P, Sheibani H. Green synthesis of Fe3O4@SiO2 -Ag magnetic nanocatalyst using safflower extract and its application as recoverable catalyst for reduction of dye pollutants in water. Applied Organometallic Chemistry 2018; 32 (4): e4249. doi: 10.1002/aoc.4249
  • 21. Balentine DA, Wiseman SA, Bouwens LCM. The chemistry of tea flavonoids. Critical Reviews in Food Science and Nutrition 1997; 37 (8): 693–704. doi: 10.1080/10408399709527797
  • 22. Graham HN. Green tea composition, consumption, and polyphenol chemistry. Preventive Medicine 1992; 21 (3): 334–350. doi: 10.1016/0091-7435(92)90041-F
  • 23. Veisi H, Ghorbani F. Iron oxide nanoparticles coated with green tea extract as a novel magnetite reductant and stabilizer sorbent for silver ions: Synthetic application of Fe3O4@green tea/Ag nanoparticles as magnetically separable and reusable nanocatalyst for reduction of 4-nitrophenol. Applied Organometallic Chemistry 2017; 31 (10): e3711. doi: 10.1002/aoc.3711
  • 24. Ertürk AS. Controlled Production of Monodisperse Plant-Mediated AgNP Catalysts Using Microwave Chemistry: A Desirability-FunctionBased Multiple-Response Optimization Approach. ChemistrySelect 2019; 4 (32): 9300–9308. doi: 10.1002/slct.201902197
  • 25. Gürbüz MU, Koca M, Elmacı G, Ertürk AS. In situ green synthesis of MnFe2O4@EP@Ag nanocomposites using Epilobium parviflorum green tea extract: An efficient magnetically recyclable catalyst for the reduction of hazardous organic dyes. Applied Organometallic Chemistry 2021; 35(6): e6230. doi: 10.1002/aoc.6230
  • 26. Ertürk AS. Biosynthesis of Silver Nanoparticles Using Epilobium parviflorum Green Tea Extract: Analytical Applications to Colorimetric Detection of Hg2+ Ions and Reduction of Hazardous Organic Dyes. Journal Cluster Science 2019; 30 (5): 1363–1373. doi: 10.1007/s10876-019-01634-4
  • 27. Maklakov SS, Lagarkov AN, Maklakov SA, Adamovich YA, Petrov DA et al. Corrosion-resistive magnetic powder Fe@SiO2 for microwave applications. Journal of alloys and compounds 2017; 706: 267-273. doi: 10.1016/j.jallcom.2017.02.250
  • 28. Kayili HM, Ertürk AS, Elmacı G, Salih B. Poly(amidoamine) dendrimer-coated magnetic nanoparticles for the fast purification and selective enrichment of glycopeptides and glycans. Journal of Separation Science 2019; 42 (20): 3209–3216. doi: 10.1002/jssc.201900492
  • 29. Elmaci G, Frey CE, Kurz P, Zümreoǧlu-Karan B. Water oxidation catalysis by using nano-manganese ferrite supported 1D-(tunnelled), 2D- (layered) and 3D-(spinel) manganese oxides. Journal of Materials Chemistry A 2016; 4 (22): 8812–8821. doi: 10.1039/c6ta00593d
  • 30. De G, Karmakar B, Ganguli D. Hydrolysis-condensation reactions of TEOS in the presence of acetic acid leading to the generation of glasslike silica microspheres in solution at room temperature. Journal of Materials Chemistry 2000; 10 (10): 2289-2293. doi: 10.1039/b003221m
  • 31. Karmakar B, De G, Ganguli D. Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS. Journal of Non-crystalline Solids 2000; 272 (2-3): 119-126. doi: 10.1016/S0022-3093(00)00231-3.
  • 32. Yang J. Noble metal-based nanocomposites: Preparation and applications. Weinheim, Germany: John Wiley & Sons, 2019. doi: 10.1002/9783527814305
  • 33. Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV et al. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews 2015; 44 (21): 7540-7590. doi: 10.1039/c5cs00343a
  • 34. Kurtan U, Amir M, Yildiz A, Baykal A. Synthesis of magnetically recyclable MnFe2O4 @SiO 2 @Ag nanocatalyst: Its high catalytic performances for azo dyes and nitro compounds reduction. Applied Surface Science 2016; 376: 16–25. doi: 10.1016/j.apsusc.2016.02.120
  • 35. Meral K, Metin Ö. Graphene oxide{magnetite nanocomposite as an effcient and magnetically separable adsorbent for methylene blue removal from aqueous solution. Turkish Journal of Chemistry 2014; 38 (5): 775–782. doi: 10.3906/kim-1312-28
  • 36. Rahimi R, Tadjarodi A, Imani M, Rabbani M, Moghaddam SS, Kerdari H. Synthesis of tetrakis(carboxyphenyl)porphyrin coated paramagnetic iron oxide nanoparticles via amino acid for photodegradation of methylene blue. Turkish Journal of Chemistry 2013; 37 (6): 879–888. doi: 10.3906/kim-1204-19
  • 37. Ahankar H, Ramazani A, Slepokura K, Lis T, Joo SW. One-pot synthesis of substituted 4H-chromenes by nickel ferrite nanoparticles as an efficient and magnetically reusable catalyst. Turkish Journal of Chemistry 2018; 42 (3): 719–734. doi:10.3906/kim-1710-14
  • 38. Hassani A, Eghbali P, Ekicibil A, Metin Ö. Monodisperse cobalt ferrite nanoparticles assembled on mesoporous graphitic carbon nitride (CoFe2O4/mpg-C3N4): A magnetically recoverable nanocomposite for the photocatalytic degradation of organic dyes. Journal of Magnetism and Magnetic Materials 2018; 456: 400–412. doi: 10.1016/j.jmmm.2018.02.067
  • 39. Hassani A, Çelikdağ G, Eghbali P, Sevim M, Karaca S et al. Heterogeneous sono-Fenton-like process using magnetic cobalt ferrite-reduced graphene oxide (CoFe2O4-rGO) nanocomposite for the removal of organic dyes from aqueous solution. Ultrasonics Sonochemistry 2018; 40: 841–852. doi: 10.1016/j.ultsonch.2017.08.026
  • 40. Xie Y, Yan B, Xu H, Chen J, Liu Q et al. Highly regenerable mussel-inspired Fe3O 4@Polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal. ACS Appl Mater Interfaces 2014; 6: 8845–8852. doi: 10.1021/am501632f
  • 41. Elmacı G. Magnetic Hollow Biocomposites Prepared from Lycopodium clavatum Pollens as Efficient Recyclable Catalyst. ChemistrySelect 2020; 5 (7): 2225–2231. doi: 10.1002/slct.201904152
  • 42. Elmacı G, Frey CE, Kurz P, Zümreoǧlu-Karan B. Water oxidation catalysis by birnessite@iron oxide core-shell nanocomposites. Inorganic Chemistry 2015; 54 (6): 2734-2741. doi: 10.1021/ic502908w
  • 43. Elmacı G. Microwave-assisted rapid synthesis of C@Fe3O4 composite for removal of microplastics from drinking water. Adıyaman University Journal of Science 2020; 10 (1): 207-217. doi: 10.37094/adyujsci.739599
  • 44. Fan R, Min H, Hong X, Yi Q, Liu W, Zhang Q et al. Plant tannin immobilized Fe3O4@SiO2 microspheres: A novel and green magnetic biosorbent with superior adsorption capacities for gold and palladium. Journal of Hazardous Materials 2019; 364: 780–790. doi: 10.1016/j.jhazmat.2018.05.061
  • 45. Dippong T, Levei EA, Goga F, Cadar O. Influence of Mn2+ substitution with Co2+ on structural, morphological and coloristic properties of MnFe2O4/SiO2 nanocomposites. Materials Characterization 2021; 172: 110835. doi: 10.1016/j.matchar.2020.110835
  • 46. Dippong T, Levei EA, Lengauer CL, Daniel A, Toloman D et al. Investigation of thermal, structural, morphological and photocatalytic properties of CuxCo1-xFe2O4 (0 ≤ x ≤ 1) nanoparticles embedded in SiO2 matrix. Materials Characterization 2020; 163: 110268. doi: 10.1016/j.matchar.2020.110268
  • 47. Nadaf NY, Kanase SS. Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation. Arabian Journal of Chemistry 2019; 12 (8): 4806–4814. doi: 10.1016/j.arabjc.2016.09.020
  • 48. Jyoti K, Singh A. Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. Journal of Genetic Engineering and Biotechnology 2016; 14 (2): 311–317. doi: 10.1016/j.jgeb.2016.09.005
  • 49. Veisi H, Azizi S, Mohammadi P. Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. Journal of Cleaner Production 2018; 170: 1536–1543. doi: 10.1016/j.jclepro.2017.09.265
  • 50. Gao P, Tian X, Yang C, Zhou Z, Li Y, Wang Y et al. Fabrication, performance and mechanism of MgO meso-/macroporous nanostructures for simultaneous removal of As( III ) and F in a groundwater system. Environmental Science: Nano 2016; 3 (6): 1416–1424. doi: 10.1039/C6EN00400H
  • 51. Kaloti M, Kumar A. Sustainable Catalytic Activity of Ag-Coated Chitosan-Capped γ-Fe 2 O 3 Superparamagnetic Binary Nanohybrids (Agγ-Fe2O3@CS) for the Reduction of Environmentally Hazardous Dyes-A Kinetic Study of the Operating Mechanism Analyzing Methyl Orange Reductio. ACS Omega 2018; 3 (2): 1529–1545. doi: 10.1021/acsomega.7b01498
  • 52. Cheng XQ, Wang ZX, Guo J, Ma J, Shao L. Designing Multifunctional Coatings for Cost-Effectively Sustainable Water Remediation. ACS Sustainable Chemistry & Engineering 2018; 6 (2): 1881–1890. doi: 10.1021/acssuschemeng.7b03296
  • 53. Das R, Sypu VS, Paumo HK, Bhaumik M, Maharaj V, Maity A. Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Applied Catalysis B: Environmental 2019; 244: 546–558. doi: 10.1016/j.apcatb.2018.11.073
  • 54. Abay AK, Chen X, Kuo D-H. Highly efficient noble metal free copper nickel oxysulfide nanoparticles for catalytic reduction of 4- nitrophenol, methyl blue, and rhodamine-B organic pollutants. New Journal Chemistry 2017; 41 (13): 5628–5638. doi: 10.1039/C7NJ00676D
  • 55. Xu Y, Shi X, Hua R, Zhang R, Yao Y et al. Remarkably catalytic activity in reduction of 4-nitrophenol and methylene blue by Fe3O4@COF supported noble metal nanoparticles. Applied Catalysis B: Environmental 2020; 260: 118142. doi: 10.1016/j.apcatb.2019.118142
  • 56. Xu P, Cen C, Zheng M, Wang Y, Wu Z et al. A facile electrostatic droplets assisted synthesis of copper nanoparticles embedded magnetic carbon microspheres for highly effective catalytic reduction of 4-nitrophenol and Rhodamine B. Materials Chemistry and Physics 2020; 253: 123444. doi: 10.1016/j.matchemphys.2020.123444
  • 57. Cui K, Yan B, Xie Y, Qian H, Wang X et al. Regenerable urchin-like Fe3O4 @PDA-Ag hollow microspheres as catalyst and adsorbent for enhanced removal of organic dyes. Journal of Hazardous Materials 2018; 350: 66–75. doi: 10.1016/j.jhazmat.2018.02.011
  • 58 Yang Y, Ji H, Duan H, Fu Y, Xia S et al. Controllable synthesis of mussel-inspired catechol-formaldehyde resin microspheres and their silver-based nanohybrids for catalytic and antibacterial applications. Polymer Chemistry 2019; 10 (33): 4537–4550. doi: 10.1039/C9PY00846B
  • 59. Sun L, He J, An S, Zhang J, Zheng J et al. Recyclable Fe3O4@SiO2-Ag magnetic nanospheres for the rapid decolorizing of dye pollutants. Chinese Journal of Catalysis 2013; 34 (7): 1378–1385. doi: 10.1016/s1872-2067(12)60605-6
  • 60. Veisi H, Razeghi S, Mohammadi P, Hemmati S. Silver nanoparticles decorated on thiol-modified magnetite nanoparticles (Fe3O4/SiO2 - Pr-S-Ag) as a recyclable nanocatalyst for degradation of organic dyes. Materials Science and Engineering: C 2019; 97: 624–631. doi: 10.1016/j.msec.2018.12.076
  • 61. Wang Y, Gao P, Wei Y, Jin Y, Sun S et al. Silver nanoparticles decorated magnetic polymer composites (Fe3O4@PS@Ag) as highly efficient reusable catalyst for the degradation of 4-nitrophenol and organic dyes. Journal of Environmental Management 2021; 278: 111473. doi: 10.1016/j.jenvman.2020.111473
  • 62. Gürbüz MU, Ertürk AS. Synthesis and Characterization of Jeffamine Core PAMAM Dendrimer-Silver Nanocomposites (Ag JCPDNCs) and Their Evaluation in The Reduction of 4-Nitrophenol. Journal of the Turkish Chemical Society Section A: Chemistry 2018: 5 (2): 885–894. doi: 10.18596/jotcsa.428572
  • 63. Corma A, Concepción P, Serna P. A Different Reaction Pathway for the Reduction of Aromatic Nitro Compounds on Gold Catalysts. Angewandte Chemie 2007; 46 (41): 7820-7822. doi: 10.1002/ange.200700823
  • 64. Zhang J, Fang Q, Duan J, Xu H, Xu H et al. Magnetically Separable Nanocatalyst with the Fe3O4 Core and Polydopamine-Sandwiched Au Nanocrystal Shell. Langmuir 2018; 34 (14): 4298–306. doi: 10.1021/acs.langmuir.8b00302
  • 65. Qin L, Huang D, Xu P, Zeng G, Lai C et al. In-situ deposition of gold nanoparticles onto polydopamine-decorated g-C3N4 for highly efficient reduction of nitroaromatics in environmental water purification. Journal of Colloid and Interface Science 2019; 534: 357–369. doi: 10.1016/j.jcis.2018.09.051
  • 66. Ajitha B, Reddy YAK, Lee Y, Kim MJ, Ahn CW. Biomimetic synthesis of silver nanoparticles using Syzygium aromaticum (clove) extract: Catalytic and antimicrobial effects. Applied Organometallic Chemistry 2019; 33 (5): e4867. doi: 10.1002/aoc.4867
  • 67. Sharma G, Jeevanandam P. A facile synthesis of multifunctional iron oxide@Ag core-shell nanoparticles and their catalytic applications. European Journal of Inorganic Chemistry 2013: 6126–6136. doi: 10.1002/ejic.201301193
  • 68. Upoma BP, Mahnaz F, Rahman Sajal W, Zahan N, Hossain Firoz MS et al. Bio-inspired immobilization of silver and gold on magnetic graphene oxide for rapid catalysis and recyclability. Journal of Environmental Chemical Engineering 2020; 8 (3): 103739. doi: 10.1016/j.jece.2020.103739
  • 69. Liao G, Li Q, Zhao W, Pang Q, Gao H et al. In-situ construction of novel silver nanoparticle decorated polymeric spheres as highly active and stable catalysts for reduction of methylene blue dye. Applied Catalysis A: General 2018; 549: 102–111. doi: 10.1016/j.apcata.2017.09.034
  • 70. Amir M, Güner S, Yıldız A, Baykal A. Magneto-optical and catalytic properties of Fe3O4@HA@Ag magnetic nanocomposite. Journal of Magnetism and Magnetic Materials 2017; 421: 462–471. doi: 10.1016/j.jmmm.2016.08.037
  • 71. Amir M, Kurtan U, Baykal A. Rapid color degradation of organic dyes by Fe3O4@His@Ag recyclable magnetic nanocatalyst. Journal of Industrial and Engineering Chemistry 2015; 27: 347–353. doi: 10.1016/j.jiec.2015.01.013
  • 72. Ismail M, Khan MI, Khan SB, Akhtar K, Khan MA et al. Catalytic reduction of picric acid, nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. Journal of Molecular Liquids 2018; 268: 87-101. doi: 10.1016/j.molliq.2018.07.030
  • 73. Sharif HMA, Mahmood A, Cheng H-Y, Djellabi R, Ali J et al. Fe3O4 Nanoparticles Coated with EDTA and Ag Nanoparticles for the Catalytic Reduction of Organic Dyes from Wastewater. ACS Applied Nano Materials 2019; 2 (8): 5310–5319. doi: 10.1021/acsanm.9b01250
  • 74. Kurtan U, Amir M, Baykal A. Fe3O4@Nico-Ag magnetically recyclable nanocatalyst for azo dyes reduction. Applied Surface Science 2016; 363: 66–73. doi: 10.1016/j.apsusc.2015.11.214
  • 75. Zhang M, Li M, Yu N, Su S, Zhang X. Fabrication of AgCl@tannic acid-cellulose hydrogels for NaBH4-mediated reduction of 4-nitrophenol. Cellulose 2021; 28 (6): 3515–3529. doi: 10.1007/s10570-021-03721-0
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution

Melek CANBULAT ÖZDEMİR

Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy

Yücel KOÇ, Uğur MORALI, Salim EROL, Hüseyin AVCI

Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method

Mehmet AKALIN, Derya SALTIK ÇİRKİN, Erhan SANCAK, Erkan İŞGÖREN, Onur ATAK, Ali BEYİT, Metin YÜKSEK

One-pot synthesis of graphene hydrogel-anchored cobalt-copper nanoparticles and their catalysis in hydrogen generation from ammonia borane

Ibtihel ZAIER, Önder METİN

Glucosamine derived hydrothermal carbon electrodes for aqueous electrolyte energy storage systems

Rezan DEMİR ÇAKAN, Burcu ÜNAL

The removal of chromium (VI) from tannery waste using Spirulina sp. immobilized silica gel

Nais Pinta ADETYA, Uma Fadzilia ARIFIN, Emiliana ANGGRIYANI

A fluorescent sensor-based tripodal-Bodipy for Cu (II) ions: bio-imaging on cells

Ahmed Nuri KURŞUNLU, Mustafa ÖZMEN, Ersin GÜLER

Synthesis and application of colloidal CdS quantum dots as interface modification material in perovskite solar cells

Esma YENEL

Antiinflammatory photodynamic therapy potential of polyoxyethylene-substituted perylene diimide, nitrocatechol, and azo dye

Furkan AYAZ, Özgül HAKLI, Kasım OCAKOĞLU

The hydrothermal synthesis of blue-emitting boron-doped CQDs and its application for improving the photovoltaic parameters of organic solar cell

Tuğbahan YILMAZ