Hybrid paper sheets with improved barrier properties

Hybrid paper sheets with improved barrier properties

Hybrid paper sheets were prepared by applying a thin coating layer of cross-linked polydimethylsiloxane (PDMS) and inorganic particles onto Whatman Grade 1 filter paper substrates. Several coatings with different inorganic particle contents and types were applied onto the paper substrates to investigate the effect of the variation in the coating formulation on the (i) wetting, (ii) water barrier properties, (iii) air barrier properties, (iv) surface roughness, and (v) mechanical properties of the samples. It was revealed that the superhydrophobic hybrid paper sheets with significantly low air permeability and high water barrier properties could be prepared which is an indication that the method proposed can be used for the preparation of packaging materials.

___

  • 1. Böhm A, Carstens F, Trieb F, Schabel S, Biesalski M. Engineering microfluidic papers: effect of fiber source and paper sheet properties on capillary-driven fluid flow. Microfluid and Nanofluid 2014; 16: 789-799. doi: 10.1007/s10404-013-1324-4
  • 2. Böhm A, Biesalski M. Paper-based microfluidic devices: a complex, low-cost material in high-tech applications. MRS Bulletin 2017; 42 (5): 356-364. doi: 10.1557/mrs.2017.92
  • 3. Geiβler A, Loyal F, Biesalski M, Zhang K. Thermo-responsive superhydrophobic paper using nanostructured cellulose stearoyl ester. Cellulose 2014; 21: 357-366. doi: 10.1007/s10570-013-0160-8
  • 4. Postulka N, Striegel A, Krauβe M, Mager D, Spiehl D et al. Combining wax printing with hot embossing for the design of geometrically well-defined microfluidic papers. ACS Applied Materials & Interfaces 2019; 11 (4): 4578-4587. doi: 10.1021/acsami.8b18133
  • 5. Blechschmidt J. Taschenbuch der Papiertechnick. Leipzig, Germany: Fachbuch Verlag Leipzig im Carl Hanser Verlag, 2010.
  • 6. Soares NFF, Moreira FKV, Fialho TL, Melo NR. Triclosan-based antibacterial paper reinforced with nano-montmorillonite: a model nanocomposite for the development of new active packaging. Polymers for Advanced Technologies 2012; 23: 901-908. doi: 10.1002/ pat.1986
  • 7. Bollström R, Nyqvist R, Preston J, Salminen P, Toivakka M. Barrier properties created by dispersion coating. Tappi Journal 2013; 12: 45-51. doi: 10.32964/TJ12.4.45
  • 8. Dai Y, Yu ZH, Wang H, Zhan JB, Xie J et al. Determination of hydrophobic degree of paper packaging materials by a tracer-assisted headspace gas chromatography. Nordic Pulp & Paper Research Journal 2020; 35 (3): 370-375. doi: 10.1515/npprj-2020-0018
  • 9. Li H, He Y, Yang J, Wang X, Lan T et al. Fabrication of food-safe superhydrophobic cellulose paper with improved moisture and air barrier properties. Carbohydrate Polymers 2019; 211: 22-30. doi: 10.1016/j.carbpol.2019.01.107
  • 10. Chandra J, Budianto E, Soegijono B. Synthesis of polymer hybrid latex polystyrene methylmethacrylate-cobutylacrylate with organomontmorillonite as filler through miniemulsion polymerization for barrier paper application. In: IOP Conference Series: Materials Science and Engineering; Semerand, Indonesia; 2019. pp. 012056 (1-14).
  • 11. Bandera D, Meyer VR, Prevost D, Zimmermann T, Boesel LF. Polylactide/montmorillonite hybrid latex as a barrier coating for paper applications. Polymers 2016; 8 (3): 75. doi:10.3390/polym8030075.
  • 12. Koşak Söz C, Trosien S, Biealski M. Superhydrophobic hybrid paper sheets with Janus type wettability. ACS Applied Materials & Interfaces 2018; 19 (43): 37478-37488. doi: 10.1021/acsami.8b12116
  • 13. Huhtamäki T, Tian X, Korhonen JT, Ras RHA. Surface-wetting characterization using contact-angle measurements. Nature Protocols 2018; 13: 1521-1538. doi: 10.1038/s41596-018-0003-z
  • 14. Botter W, Soares RF, Galembeck F. Interfacial reactions and self-adhesion of polydimethylsiloxanes. Journal of Adhesion Science and Technology 2012; 6: 791-805. doi: 10.1163/156856192X00449
  • 15. Soares NFF, Moreira FKV, Fialho TL, Melo NR. Triclosan-based antibacterial paper reinforced with nano-montmorillonite: a model nanocomposite for the development of new active packaging. Polymers for Advanced Tecnologies 2012; 23: 901-908. doi: 10.1002/pat.1986
  • 16. Krumpfer JW, McCarthy TJ. Rediscovering silicones: “unreactive” silicones react with inorganic surfaces. Langmuir 2011; 27: 11514- 11519. doi: 10.1021/la202583w
  • 17. Bitinis N, Hernandez M, Verdejo R, Kenny JM, Lopez-Manchado MA. Recent advances in clay/polymer nanocomposites. Advanced Materials 2011; 23: 5229-5236. doi: 10.1002/adma.201101948
  • 18. Wang S, Jing Y. Effects of formation and penetration properties of biodegradable montmorillonite/chitosan nanocomposite film on the barrier of package paper. Applied Clay Science 2017; 138: 74-80. doi: 10.1016/j.clay.2016.12.037
  • 19. Saroha V, Dutt D, Bhowmick A. PVOH modified nano-kaolin as barrier coating material for food packaging application. In: AIP Conference Proceedings 2019; Malang City, Indonesia; 2019. pp:20001 (1-4).
  • 20. Zhu Y, Bousfield D, Gramlich WM. The influence of pigment type and loading on water vapor barrier properties of paper coatings before and after folding. Progress in Organic Coatings 2019; 132: 201-210. doi: 10.1016/j.porgcoat.2019.03.031
  • 21. Venkatesh G, Nyflött A, Bonnerup C, Lestelius M. An economic-environmental analysis of selected barriercoating materials used in packaging food products: a Swedish case study. Environment, Development, and Sustainability 2018; 20: 1483-1497. doi: 10.1007/s10668- 017-9948-2
  • 22. Breen C, Clegg F, Thompson S, Jarnstrom L, Johansson C. Exploring the interactions between starches, bentonites and plasticizers in sustainable barrier coatings for paper and board. Applied Clay Science 2019; 183: 105272 (1-14). doi: 10.1016/j.clay.2019.105272
  • 23. Zhang X, Xiao F, Feng Q, Zheng J, Chen C et al. Preparation of $SiO_2$ nanoparticles with adjustable size for fabrication of $SiO_2/PMHS$ ORMOSIL superhydrophobic surface on cellulose-based substrates. Progress in Organic Coatings 2020; 138: 105384 (1-10). doi: 10.1016/j. porgcoat.2019.105384
  • 24. Gao J, Huang X, Xue H, Tang L, Li RKY. Facile preparation of hybrid microspheres for super-hydrophobic coating and oil-water separation. Chemical Engineering Journal 2017; 326: 443-453. doi: 10.1016/j.cej.2017.05.175
  • 25. Tasleem S, Sabah A, Cheema UA, Sabir A. Transparent hydrophobic hybrid silica films by green and chemical surfactants. ACS Omega 2019; 4: 13543-13552. doi: 10.1021/acsomega.9b01894
  • 26. Musikavanhu B, Hu Z, Dzapata RL, Xu Y, Christie P et al. Facile method for the preparation of superhydrophobic cellulosic paper. Applied Surface Science 2019; 496: 143648 (1-9). doi: 10.1016/j.apsusc.2019.143648
  • 27. Shu F, Wang M, Pang J, Yu P. A free-standing superhydrophobic film for highly efficient removal of water from turbine oil. Frontiers of Chemical Science and Engineering 2019; 13 (2): 393-399. doi: 10.1007/s11705-018-1754-3
  • 28. Sriram S, Kumar A. Separation of oil-water via porous $PMMA/SiO_2$ nanoparticles superhydrophobic surface. Colloid Surface 2019; 563: 271-279. doi: 10.1016/j.colsurfa.2018.12.017
  • 29. Pourjavadi A, Esmaili H, Nazari M. Facile fabrication of superhydrophobic nanocomposite coating using modified silica nanoparticles and nonfluorinated acrylic copolymer. Polymer Bulletin 2018; 75: 4641-4655. doi: 10.1007/s00289-018-2284-3
  • 30. Liu Z, Yu J, Lin W, Yang W, Li R et al. Facile method for the hydrophobic modification of filter paper for applications in water-oil separation. Surface and Coatings Technology 2018; 352: 313-319. doi: 10.1016/j.surfcoat.2018.08.026
  • 31. Liu K, Vuckovac M, Latikka M, Huhtamäki T, Ras RHA. Improving surface-wetting characterization. Materials Science 2019; 363 (6432): 1147-1149. doi: 10.1126/science.aav5388
  • 32. Vuckovac M, Latikka M, Liu K, Huhtamäki T, Ras RHA. Uncertainties in contact angle goniometry. Soft Matter 2019; 15: 7089-7096. doi: 10.1039/C9SM01221D
  • 33. Saroha V, Dutt D, Bhowmick A. PVOH modified nano-kaolin as barrier coating material for food packaging application, In: AIP Conference Proceedings 2019; Malang City, Indonesia; 2019. pp. 020001 (1-5)
  • 34. Sundar N, Kumar SA, Pavithra A, Ghosh S. Studies on semi-crystalline poly lactic acid (PLA) as a hydrophobic coating material on kraft paper for imparting barrier properties in coated abrasive applications. Progress in Organic Coatings 2020; 145: 105682. doi: 10.1016/j. porgcoat.2020.105682
  • 35. Cherpinski A, Torres-Giner S, Cabedo L, Mendez JA, Lagaron JM. Multilayer structures based on annealed electrospun biopolymer coatings of interest in water and aroma barrier fiber-based food packaging applications. Journal of Applied Polymer Science 2018; 135 (24): 4551 (1-13). doi: 10.1002/APP.45501, 45501
  • 36. Marzbani P, Azadfallah M, Yousefzadeh M, Najafi F, Pourbabaee AA et al. Effect of polyethylene wax/soy protein-based dispersion barrier coating on the physical, mechanical, and barrier characteristics of paperboards. Journal of Coatings Technology and Research 2020; doi: 10.1007/s11998-020-00403-7
  • 37. Mongrain Y. Water-, oil-, and grease-resistant multilayer coating for paper-based substrate and uses of thereof. US2019/0291134A1 2019.
  • 38. Pino A, Pladellorens J, Colom FF, Cusola O, Tosas A. Using laser speckle to measure the roughness of paper. Tappi Journal 2011; 10 (3): 7-13. doi: 10.32964/TJ10.3.7
  • 39. Hlandik A, Lazar M. Paper physics: paper and board surface roughness characterization using laser profilometry and gray level cooccurrence matrix. Nordic Pulp & Paper Research Journal 2018; 26 (1): 99-105. doi: 10.3183/npprj-2011-26-01-p099-105
  • 40. Prykäri T, Alarousu E, Myllylä R. Comparing low coherence interferometry with conventional methods of measuring paper roughness. In: Saratov Fall Meeting 2006: Coherent Optics of Ordered and Random Media VII; Russia; 2016. p 65360O.
  • 41. Sonmez S, Elmas GM. Printability effect on Asam Rumex exreacted papers. Oxidation Communications 2018; 40: 441-450.
  • 42. Khosravani A, Asadollahzade M, Rahmaninia M, Bahramifar N, Azadfallah M. The effect of internal application of organosilicon compounds on the hydrophobicity of recycled OCC paper. Bioresources 2016; 11: 8257-8268. doi: 10.15376/biores.11.4.8257-8268
  • 43. Fanta GF, Felker FC, Hay WT, Selling GW. Increased water resistance of paper treated with amylose-fatty ammonium salt inclusion complexes. Industrial Crops and Products 2017; 105: 231-237. doi: 10.1016/j.indcrop.2017.04.060
  • 44. Zhang Y, Li Y, Li M, Xu M, Yue J. Preparation of carboxymethyl cellulose from tea stalk and its use as a paper-strengthening agent. Nordic Pulp & Paper Research Journal 2019; 34 (3): 310-317. doi: 10.1515/npprj-2019-0001
  • 45. Wang M, He W, Wang S, Song X. Carboxymethylated glucomannan as paper strengthening agent. Carbohydrate Polymers 2015; 125: 334- 339. doi: 10.1016/j.carbpol.2015.02.060
  • 46. Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997; 202: 1-8. doi: 10.1007/s004250050096
  • 47. Kim E, Kim S, Kim SS. Preparation and characterization of monodisperse polystyrene-silica nanocomposites. Macromolecular Research 2015; 23 (8): 787-794. doi: 10.1007/s13233-015-3097-y
  • 48. Mohammed Salih, S. Fourier Transform-Materials Analysis. Rijeka, Croatia: IntechOpen, 2012.
  • 49. Tang F, Zhang L, Zhang Z, Cheng Z, Zhu X. Cellulose filter paper with antibacterial activity from surface-initiated ATRP. Jornal of Macromolecular Science, Part A: Pure and Applied Chemistry 2009; 46: 989-996. doi: 10.1080/10601320903158651
  • 50. Garside P, Wyeth P. Identification of cellulosic fibres by FTIR spectroscopy - thread and single fibre analysis by attenuated total reflectance. Studies in Conservation 2013; 48: 269-275. doi: 10.1179/sic.2003.48.4.269
  • 51. Jin Q, Ma L, Zhou W, Shen Y, Fernandez-Delgado O et al. Smart paper transformer: New insight for enhanced catalytic efficiency and reusability of noble metal nanocatalysts. Chemical Science 2020; 11: 2915 (1-12). doi: 10.1039/C9SC05287A
  • 52. Yilgor E, Eynur T, Kosak C, Bilgin S, Yilgor I et al. Fumed silica filled poly(dimethylsiloxane-urea) segmented copolymers: preparation and properties. Polymer 2011; 52: 4189-4198. doi: 10.1016/j.polymer.2011.07.041
  • 53. Rubio F, Rubio J, Oteo JL. A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS). Spectroscopy Letters 1998; 31 (1): 199-219. doi: 10.1080/00387019808006772
  • 54. Ly HQ, Taylor R, Day RJ, Heatley F. Conversion of polycarbosilane (PCS) to SiC-based ceramic Part 1. Characterisation of PCS and curing products. Journal of Materials Science 2001; 13: 4037-4043. doi: 10.1023/A:1017942826657
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Sensitive and selective determination of imidacloprid with magnetic molecularly imprinted polymer by using LC/Q-TOF/MS

Raif İLKTAÇ, Zinar Pınar GÜMÜŞ

Adsorptive performance of MWCNTs for simultaneous cationic and anionic dyes removal; kinetics, thermodynamics, and isotherm study

Abdul ZAHIR, Adnan AKHTAR, Zaheer ASLAM, Irfan YOUSAF

Structural and adsorption behaviour of ZnO/aminated SWCNT-COOH for malachite green removal: face-centred central composite design

Zeynep CİĞEROĞLU

Theoretical investigation on the addition reaction of the germylenoid $H_2$ GeLiCl with acetone

Bingfei YAN, Wenzuo LI, Xiaolin ZHANG

Feature of catalysis on bimetallic alloys Zr with V, Mo, and Fe in the reaction of methanol oxidation

Arif EFENDI, Lala MAGERRAMOVA, Adila ALIYEVA, Lyudmila KOJA ROVA, Elmir BABAYEV

Evaluation of quercetin as a potential β-lactamase CTX-M-15 inhibitor via the molecular docking, dynamics simulations, and MMGBSA

Emrah SARIYER, Ayşegül SARAL

Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent

Meltem GÜRBÜZ, Fatma TÜMSEK

Multiple objective optimization of air assisted liquid-liquid microextraction combined with solidified floating organic drop microextraction for simultaneous determination of trace copper and nickel

Simin MALEKNIA, Fereshteh ISLAMI BONAB, Sanaz SAJEDI AMIN, Saeed Mohammad SOROURADDIN, Abdolhossein NASERI

Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology

Ömer Faruk ER, Berdan ULAŞ, Hilal DEMİR KIVRAK

Fabrication and characterization of enhanced hydrazine electrochemical sensor based on gold nanoparticles decorated on the vanadium oxide, ruthenium oxide nanomaterials, and carbon nanotubes composites

Süleyman KOÇAK, Sibel KARACA