Development of a spiramycin sensor based on adsorptive stripping linear sweep voltammetry and its application for the determination of spiramycin in chicken egg samples

Development of a spiramycin sensor based on adsorptive stripping linear sweep voltammetry and its application for the determination of spiramycin in chicken egg samples

Herein, an adsorptive stripping linear sweep voltammetric technique was described to determine spiramycin, a macrolide antibiotic, using a carboxylic multiwalled glassy carbon electrode modified with carbon nanotubes. The main principle of the analytical methodology proposed was based on the preconcentration of spiramycin by open-circuit accumulation of the macrolide onto the modified electrode surface. As a result of the adsorption affinity of spiramycin to the modified surface, the sensitivity of the glassy carbon electrode was significantly increased for the determination of spiramycin. The electrochemical behavior of spiramycin was evaluated by cyclic voltammetry and the irreversible anodic peak observed was measured as an analytical signal in the methodology. The proposed electrochemical sensing platform was quite linear in the range of 0.100–40.0 µM of spiramycin concentration with a correlation coefficient of 0.9993. The limit of detection and the limit of quantification were 0.028 and 0.094 µM, respectively. The intra- and interday repeatability of the proposed sensor was within acceptable limits. Finally, the applicability of the electrochemical methodology was examined by determining the drug content of chicken egg samples spiked with spiramycin standard. A rapid and easy extraction technique was performed to extract spiked spiramycin from the egg samples. The extraction technique followed had good recovery values between 85.3 ± 4.0% and 93.4 ± 1.9%.

___

  • 1. Barton MD. Antibiotic use in animal feed and its impact on human health. Nutrition Research Reviews 2000; 13 (2): 279-299. doi: 10.1079/095442200108729106
  • 2. Yoshida M, Kubota D, Yonezawa S, Nakamura H, Azechi H et al. Transfer of dietary spiramycin into the eggs and its residue in the liver of laying hen. Japanese Poultry Science 1971; 8: 103-110.
  • 3. Roudaut B, Moretain JP. Residues of macrolide antibiotics in eggs following medication of laying hens. British Poultry Science 1990; 31 (3): 661-675. doi: 10.1080/00071669008417297
  • 4. Furusawa N. Spiramycin, oxytetracycline and sulphamonomethoxine contents of eggs and egg-forming tissues of laying hens. Journal of Veterinary Medicine Series A 1999; 46 (10): 599-603. doi: 10.1046/j.1439-0442.1999.00247.x
  • 5. Wang J, Leung D, Butterworth F. Determination of five macrolide antibiotic residues in eggs using liquid chromatography/electrospray ionization tandem mass spectrometry. Journal of Agricultural and Food Chemistry 2005; 53 (6): 1857-1865. doi: 10.1021/jf048414p
  • 6. Zhao F, Luo Y, Gong B, Zhang Y, Xiao C et al. Simultaneous determination of spiramycin (I) and neospiramycin in chicken by liquid chromatography-tandem mass spectrometry. Journal of Food Safety 2016; 7 (11): 4602-4608.
  • 7. Lee SH, Yoo M, Shin DB. Determination of four macrolide antibiotics residues in chicken muscle using high-performance liquid chromatography. Journal of Food Hygiene and Safety 2013; 28 (1): 19-23. doi: 10.13103/jfhs.2013.28.1.019
  • 8. Furusawa N. Normal-phase high-performance liquid chromatographic determination of spiramycin in eggs and chicken. Talanta 1999; 49 (2): 461-465. doi: 10.1016/S0039-9140(99)00043-0
  • 9. Wang K, Lin K, Huang X, Chen M. A simple and fast extraction method for the determination of multiclass antibiotics in eggs using LC-MS/ MS. Journal of Agricultural and Food Chemistry 2017; 65 (24): 5064-5073. doi: 10.1021/acs.jafc.7b01777
  • 10. Horie M, Saito K, Ishii R, Yoshida T, Yukari H et al. Simultaneous determination of five macrolide antibiotics in meat by high-performance liquid chromatography. Journal of Chromatography A 1998; 812 (1-2): 295-302. doi: 10.1016/S0021-9673(98)00004-1
  • 11. Juhel-Gaugain M, Anger B, Laurentie M. Multiresidue chromatographic method for the determination of macrolide residues in muscle by high-performance liquid chromatography with UV detection. Journal of AOAC International 1999; 82 (5): 1046-1053. doi: 10.1093/ jaoac/82.5.1046
  • 12. Maher HM, Youssef RM, Khalil RH, El-Bahr SM. Simultaneous multiresidue determination of metronidazole and spiramycin in fish muscle using high performance liquid chromatography with UV detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2008; 876 (2): 175-181. doi: 10.1016/j.jchromb.2008.10.033
  • 13. Mahmoudi A. Efficient and simple HPLC method for spiramycin determination in urine samples and in pharmaceutical tablets. Separation Science Plus 2018; 1 (4): 253-260. doi: 10.1002/sscp.201800014
  • 14. Lin Q, Kahsay G, de Waal T, Zhu P, Tam M, Teughels R, et al. Improved liquid chromatographic method for quality control of spiramycin using superficially porous particles. Journal of Pharmaceutical and Biomedical Analysis 2018; 149: 57-65. doi: 10.1016/j.jpba.2017.10.041
  • 15. Elkhoudary MM, Abdel Salam RA, Hadad GM. Development and optimization of HPLC analysis of metronidazole, diloxanide, spiramycin and cliquinol in pharmaceutical dosage forms using experimental design. Journal of Chromatographic Science 2016; 54 (10): 1701-1712. doi: 10.1093/chromsci/bmw126
  • 16. García Mayor MA, Paniagua González G, Garcinuño Martínez RM, Fernández Hernando P, Durand Alegría JS. Synthesis and characterization of a molecularly imprinted polymer for the determination of spiramycin in sheep milk. Food Chemistry 2017; 221: 721-728. doi: 10.1016/j. foodchem.2016.11.114
  • 17. Gomis DB, Ferreras AIA, Álvarez MDG, García EA. Determination of spiramycin and josamycin in milk by HPLC and fluorescence detection. Journal of Food Science 2006; 69 (5): C415-C418. doi: 10.1111/j.1365-2621.2004.tb10708.x
  • 18. Delépine B, Hurtaud-Pessel D, Sanders P. Multiresidue method for confirmation of macrolide antibiotics in bovine muscle by liquid chromatography/mass spectrometry. Journal of AOAC International 1996; 79 (2): 397-404. doi: 10.1093/jaoac/79.2.397
  • 19. Dubois M, Fluchard D, Sior E, Delahaut P. Identification and quantification of five macrolide antibiotics in several tissues, eggs and milk by liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications 2001; 753 (2): 189-202. doi: 10.1016/S0378-4347(00)00542-9
  • 20. Horie M, Takegami H, Toya K, Kikuchi Y, Nakazawa H. Deternination of spiramycin and tilmicosin in meat and fish by LC/MS. Journal of the Food Hygienic Society of Japan 2003; 44 (3): 150-154. doi: 10.3358/shokueishi.44.150
  • 21. Wang J. Determination of five macrolide antibiotic residues in honey by LC-ESI-MS and LC-ESI-MS/MS. Journal of Agricultural and Food Chemistry 2004; 52 (2): 171-181. doi: 10.1021/jf034823u
  • 22. Wang J, Leung D. Determination of spiramycin and neospiramycin antibiotic residues in raw milk using LC/ESI-MS/MS and solid-phase extraction. Journal of Separation Science 2009; 32 (4): 681-688. doi: 10.1002/jssc.200800599
  • 23. Khattab FI, Ramadan NK, Hegazy MA, Ghoniem NS. Simultaneous determination of metronidazole and spiramycin in bulk powder and in tablets using different spectrophotometric techniques. Drug Testing and Analysis 2010; 2 (1): 37-44. doi: 10.1002/dta.83
  • 24. Shuhaib RS. Sensitive and selective spectrophotometric determination of spiramycin in pure form and in pharmaceutical formulations. International Journal of Pharmaceutical Sciences and Research 2013; 6: 2234-2243.
  • 25. Zhou J, Chen Y, Cassidy R. Separation and determination of the macrolide antibiotics (erythromycin, spiramycin and oleandomycin) by capillary electrophoresis coupled with fast reductive voltammetric detection. Electrophoresis 2000; 21 (7): 1349-1353. doi: 10.1002/ (SICI)1522-2683(20000401)21:7<1349::AID-ELPS1349>3.0.CO;2-Z
  • 26. Yujie H, Zhong X, Ping CP. Cyclic voltammetry and determination of spiramycin at water/oil ınterfaces. Chemistry and Adhesion 1996; 03.
  • 27. Liang R, Zheng L, Xiao-Hong L. Research on electrochemical behavior of spiramycin. Journal of Medical Pest Control 2010; 09.
  • 28. Youssef RM, Maher HM. Electrochemical study of spiramycin and its determination in pharmaceutical preparation. Drug Testing and Analysis 2010; 2 (8): 392-396. doi: 10.1002/dta.137
  • 29. Khattab FI, Ramadan NK, Hegazy MA, Ghoniem NS. Microsized graphite sensors for potentiometric determination of metronidazole and spiramycin. Portugaliae Electrochimica Acta 2011; 29 (2): 79-90. doi: 10.4152/pea.201102079
  • 30. Adhikari BR, Govindhan M, Chen A. Carbon nanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors 2015; 15 (9): 22490-22508. doi: 10.3390/s150922490
  • 31. Mohamed MA, Hasan MM, Abdullah IH, Abdellah AM, Yehia AM et al. Smart bi-metallic perovskite nanofibers as selective and reusable sensors of nano-level concentrations of non-steroidal anti-inflammatory drugs. Talanta 2018; 185: 344-351. doi: 10.1016/j.talanta.2018.03.104
  • 32. Shetti NP, Nayak DS, Kuchinad GT, Naik RR. Electrochemical behavior of thiosalicylic acid at $γ-Fe_2O_3$ nanoparticles and clay composite carbon electrode. Electrochimica Acta 2018; 269: 204-211. doi: 10.1016/j.electacta.2018.02.170
  • 33. Mohamed MA, Atty SA, Asran AM, Boukherroub R. One-pot green synthesis of reduced graphene oxide decorated with β-Ni(OH) 2-nanoflakes as an efficient electrochemical platform for the determination of antipsychotic drug sulpiride. Microchemical Journal 2019; 147: 555-563. doi: 10.1016/j.microc.2019.03.057
  • 34. Erady V, Mascarenhas RJ, Satpati AK, Detriche S, Mekhalif Z et al. A novel and sensitive hexadecyltrimethylammoniumbromide functionalized Fe decorated MWCNTs modified carbon paste electrode for the selective determination of quercetin. Materials Science and Engineering C2017; 76: 114-122. doi: 10.1016/j.msec.2017.03.082
  • 35. Shetti NP, Nayak DS, Malode SJ, Kakarla RR, Shukla SS et al. Sensors based on ruthenium-doped $TiO_2$ nanoparticles loaded into multiwalled carbon nanotubes for the detection of flufenamic acid and mefenamic acid. Analytica Chimica Acta 2019; 1051: 58-72. doi: 10.1016/j.aca.2018.11.041
  • 36. Rosca ID, Watari F, Uo M, Akasaka T. Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 2005; 43 (15): 3124-3131. doi:10.1016/j.carbon.2005.06.019
  • 37. Kuznetsova A, Popova I, Yates JT, Bronikowski MJ, Huffman CB et al. Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. Journal of the American Chemical Society 2001; 123 (43): 10699-10704. doi: 10.1021/ja011021b
  • 38. Kukovecz A, Kramberger C, Holzinger M, Kuzmany H, Schalko J et al. On the stacking behavior of functionalized single-wall carbon nanotubes. Journal of Physical Chemistry B 2002; 106 (25): 6374-6380. doi: 10.1021/jp014019f
  • 39. Hu H, Bhowmik P, Zhao B, Hamon MA, Itkis ME et al. Determination of the acidic sites of purified single-walled carbon nanotubes by acidbase titration. Chemical Physics Letters 2001; 345 (1-2): 25-28. doi: 10.1016/S0009-2614(01)00851-X
  • 40. Cittan M, Çelik A. An electrochemical sensing platform for trace analysis of Eriochrome Black T using multi-walled carbon nanotube modified glassy carbon electrode by adsorptive stripping linear sweep voltammetry. International Journal of Environmental Analytical Chemistry 2019; 99 (15): 1540-1552. doi: 10.1080/03067319.2019.1625342
  • 41. Yao H, Sun Y, Lin X, Tang Y, Liu A et al. Selective determination of epinephrine in the presence of ascorbic acid and uric acid by electrocatalytic oxidation at poly(eriochrome black T) film-modified glassy carbon electrode. Analytical Sciences 2007; 23 (6): 677-682. doi: 10.2116/ analsci.23.677
  • 42. Gilbert O, Kumara Swamy BE, Chandra U, Sherigara BS. Electrocatalytic oxidation of dopamine and ascorbic acid at poly (eriochrome black-t) modified carbon paste electrode. Int J Electrochem Sci 2009; 4: 582-591.
  • 43. Chandra U, Swamy BEK, Gilbert O, Reddy S, Sherigara BS. Determination of dopamine in presence of uric acid at poly (eriochrome black t) film modified graphite pencil electrode. American Journal of Analytical Chemistry 2011; 2 (02): 262-269. doi: 10.4236/ajac.2011.22032
  • 44. Cittan M, Koçak S, Çelik A, Dost K. Determination of oleuropein using multiwalled carbon nanotube modified glassy carbon electrode by adsorptive stripping square wave voltammetry. Talanta 2016; 159: 148-154. doi: 10.1016/j.talanta.2016.06.021
  • 45. Wan H, Zhao F, Zeng B. Direct electrochemistry and voltammetric determination of midecamycin at a multi-walled carbon nanotube coated gold electrode. Colloids and Surfaces B: Biointerfaces 2011; 86 (1): 247-250. doi: 10.1016/j.colsurfb.2011.03.037
  • 46. Drljevic-Djuri KM, Avramov Ivić ML, Petrović SD, Mijin DZ, Jadranin MB. A voltammetric method for the quantitative determination of midecamycin compared to its simultaneous HPLC determination. Russian Journal of Electrochemistry 2011; 47 (7): 781-786. doi: 10.1134/ S1023193511070056
  • 47. Xi X, Ming L. A voltammetric sensor based on electrochemically reduced graphene modified electrode for sensitive determination of midecamycin. Analytical Methods 2012; 4 (9): 3013-3018. doi: 10.1039/c2ay25537e
  • 48. ICH Topic Q2B, Guideline on validation of analytical procedures: methodology | FDA, May 1997.