Preparation of glutathione loaded nanoemulsions and testing of hepatoprotective activity on THLE-2 cells

Preparation of glutathione loaded nanoemulsions and testing of hepatoprotective activity on THLE-2 cells

To improve bioavailability and stability of hydrophobic and hydrophilic compounds, nanoemulsions are good alternatives as delivery systems because of their nontoxic and nonirritant nature. Glutathione (GSH) suffers from low stability in water, where its encapsulation in nanoemulsions is a powerful strategy to its stability in aqueous systems. The aim of this study was to obtain nanoemulsions from the hydrophobic/hydrophilic contents of N. sativa seed oil so as to improve GSH stability along with bioavailability of N. sativa seed oil. Then, the prepared nanoemulsions were tested for in vitro hepatoprotective activity against ethanol toxicity. To the best of our knowledge, there is no study on the test of nanoemulsions by the combination of Nigella sativa seed oils and GSH in hepatoprotective activity. Here, nanoemulsions with different contents were prepared using Nigella sativa seed oils. Content analyses and characterisation studies of prepared nanoemulsions were carried out. In order to investigate the protective effects against to ethanol exposure, THLE-2 cells were pretreated with nanoemulsions for 2 h with the maximum benign dose (0.5 mg/mL of nanoemulsions). Ethanol (400 mM) was introduced to pretreated cells and nontreated cells for 48- or 72-h periods, followed by cell viability assay was carried out. Fluorescence microscopy tests revealed the introduction of the nanoemulsions into THLE-2 cells. The findings show that nanoformulations have promising in vitro hepatoprotective effects on the THLE-2 cell line against ethanol exposure.

___

  • 1. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP et al. Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology 2018; 16 (1): 71-71. doi: 10.1186/s12951-018-0392-8
  • 2. Guler B, Demir B, Guler E, Gulec K, Yesiltepe O et al. Targeting and imaging of cancer cells using nanomaterials. In: Grumezescu AM (editor). Nanobiomaterials in Medical Imaging: Applications of Nanobiomaterials. Norwich, NY, USA: William Andrew Publishing, 2016, pp. 209-251. doi: 10.1016/B978-0-323-41736-5.00007-8
  • 3. Guler E, Demir B, Guler B, Demirkol DO, Timur S. BiofuNctionalized nanomaterials for targeting cancer cells. In: Ficai A, Grumezescu AM (editors). Nanostructures for Cancer Therapy. Amsterdam, Netherlands: Elsevier, 2017, pp. 51-86. doi: 10.1016/B978-0-323-46144- 3.00003-9
  • 4. Guler E, Barlas FB, Yavuz M, Demir B, Gumus ZP et al. Bio-active nanoemulsions enriched with gold nanoparticle, marigold extracts and lipoic acid: In vitro investigations. Colloids and Surfaces B: Biointerfaces 2014; 121: 299-306. doi: 10.1016/j.colsurfb.2014.05.026
  • 5. Gunes A, Guler E, Un RN, Demir B, Barlas FB et al. Niosomes of Nerium oleander extracts: In vitro assessment of bioactive nanovesicular structures. Journal of Drug Delivery Science and Technology 2017; 37: 158-165. doi: 10.1016/j.jddst.2016.12.013
  • 6. Gumus ZP, Guler E, Demir B, Barlas FB, Yavuz M et al. Herbal infusions of black seed and wheat germ oil: Their chemical profiles, in vitro bio-investigations and effective formulations as Phyto-Nanoemulsions. Colloids and Surfaces B: Biointerfaces 2015; 133: 73-80. doi: 10.1016/j.colsurfb.2015.05.044
  • 7. Atta MB. Some characteristics of nigella (Nigella sativa L.) seed cultivated in Egypt and its lipid profile. Food Chemistry 2003; 83 (1): 63- 68. doi: 10.1016/S0308-8146(03)00038-4
  • 8. Bourgou S, Ksouri R, Bellila A, Skandrani I, Falleh H et al. Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. Comptes Rendus - Biologies 2008; 331 (1): 48-55. doi: 10.1016/j.crvi.2007.11.001
  • 9. Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK et al. A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pacific Journal of Tropical Biomedicine 2013; 3 (5): 337-352. doi: 10.1016/S2221-1691(13)60075-1
  • 10. Ali B, Blunden G. Pharmacological and Toxicological Properties of Nigella sativa. Phytotherapy Research 2003; 17: 299-305. doi: 10.1002/ ptr.1309
  • 11. Cheikh-Rouhou S, Besbes S, Hentati B, Blecker C, Deroanne C et al. Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food Chemistry 2007; 101 (2): 673-681. doi: 10.1016/j.foodchem.2006.02.022
  • 12. Wu G, Fang Y-Z, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. The Journal of Nutrition 2004; 134 (3): 489-492. doi: 10.1093/jn/134.3.489
  • 13. Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: implication in redox and detoxification. Clinica Chimica Acta 2003; 333 (1): 19-39. doi: 10.1016/S0009-8981(03)00200-6
  • 14. Li Y, Wei G, Chen J. Glutathione: a review on biotechnological production. Applied Microbiology and Biotechnology 2004; 66 (3): 233- 242. doi: 10.1007/s00253-004-1751-y
  • 15. Sharma B, Iqbal B, Kumar S, Ali J, Baboota S. Resveratrol-loaded nanoemulsion gel system to ameliorate UV-induced oxidative skin damage: from in vitro to in vivo investigation of antioxidant activity enhancement. Archives of Dermatological Research 2019; 311 (10): 773-793. doi: 10.1007/s00403-019-01964-3
  • 16. Loguercio C, Piscopo P, Guerriero C, De Girolamo V, Disalvo D et al. Effect of alcohol abuse and glutathione administration on the circulating levels of glutathione and on antipyrine metabolism in patients with alcoholic liver cirrhosis. Scandinavian Journal of Clinical and Laboratory Investigation 1996; 56 (5): 441-447. doi: 10.3109/00365519609088799
  • 17. Khan NU, Ali A, Khan H, Khan ZU, Ahmed Z. Stability studies and characterization of glutathione-loaded nanoemulsion. Journal of Cosmetic Science 2018; 69 (4): 257-267.
  • 18. Tsukamoto H, Lu SC. Current concepts in the pathogenesis of alcoholic liver injury. The FASEB Journal 2001; 15 (8): 1335-1349. doi: 10.1096/fj.00-0650rev
  • 19. Iimuro Y, Bradford BU, Yamashina S, Rusyn I, Nakagami M et al. The glutathione precursor L-2-oxothiazolidine-4-carboxylic acid protects against liver injury due to chronic enteral ethanol exposure in the rat. Hepatology 2000; 31 (2): 391-398. doi: 10.1002/hep.510310219
  • 20. Mollazadeh H, Hosseinzadeh H. The protective effect of Nigella sativa against liver injury: a review. Iranian Journal of Basic Medical Sciences 2014; 17 (12): 958-966. doi: 10.22038/ijbms.2015.3852
  • 21. Mosbah A, Zettal H, Khither H, Mosbah C, Chaouche N et al. Therapeutic effect of Nigella sativa on alcohol-induced liver disease in rats. European Journal of Medicinal Plants 2017; 20 (1): 1-7. doi: 10.9734/ejmp/2017/34661
  • 22. Pourbakhsh H, Taghiabadi E, Abnous K, Hariri AT, Hosseini SM et al. Effect of nigella sativa fixed oil on ethanol toxicity in rats. Iranian Journal of Basic Medical Sciences 2014; 17 (12): 1020-1031. doi: 10.22038/ijbms.2015.3862
  • 23. Nehar S. Hepatoprotective effect of Nigella sativa seed oil on rat model of alcoholic liver disease. International Journal for Pharmaceutical Research Scholars 2014; 3 (1): 464-472.
  • 24. Kade S, Herzog N, Schmidtke K-U, Küpper J-H. Chronic ethanol treatment depletes glutathione regeneration capacity in hepatoma cell line HepG2. Journal of Cellular Biotechnology 2016; 1 (2): 183-190. doi: 10.3233/jcb-15019
  • 25. Pfeifer AM, Cole KE, Smoot DT, Weston A, Groopman JD et al. Simian virus 40 large tumor antigen-immortalized normal human liver epithelial cells express hepatocyte characteristics and metabolize chemical carcinogens. Proceedings of the National Academy of Sciences of the United States of America 1993; 90 (11): 5123-5127. doi: 10.1073/pnas.90.11.5123
  • 26. Ozturk Kirbay F, Geyik C, Guler E, Yesiltepe O, Gumus ZP et al. Testing of bioactive-nanovesicles on hepatotoxicity of atypical antipsychotics via digital holography. Colloids and Surfaces B: Biointerfaces 2017; 152: 289-295. doi: 10.1016/j.colsurfb.2017.01.006
  • 27. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 1965; 16 (3): 144-158.
  • 28. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958; 181 (4617): 1199-1200. doi: 10.1038/1811199a0
  • 29. Gumus ZP, Ertas H, Yasar E, Gumus O. Classification of olive oils using chromatography, principal component analysis and artificial neural network modelling. Journal of Food Measurement and Characterization 2018; 12 (2): 1325-1333. doi: 10.1007/s11694-018-9746-z
  • 30. Mosmann T. Rapid Colorimetric Assay for Cellular Growth and Survival : Application to Proliferation and Cytotoxicity Assays 1983; 65: 55–63. doi: 10.1016/0022-1759(83)90303-4.
  • 31. Tada H, Shiho O, Kuroshima K ichi, Koyama M, Tsukamoto K. An improved colorimetric assay for interleukin 2. Journal of Immunological Methods 1986; 93 (2): 157-165. doi: 10.1016/0022-1759(86)90183-3
  • 32. Septisetyani EP, Ningrum RA, Romadhani Y, Wisnuwardhani PH, Santoso A. Optimization of sodium dodecyl sulphate as a formazan solvent and comparison of 3-(4,-5-dimethylthiazo-2-Yl)-2,5-diphenyltetrazolium bromide (Mtt) assay with Wst-1 assay in Mcf-7 cells. Indonesian Journal of Pharmacy 2014; 25 (4): 245. doi: 10.14499/indonesianjpharm25iss4pp245
  • 33. Olivares IP, Bucio L, Souza V, Carabez A, Gutierrez-Ruiz MC. Comparative study of the damage produced by acute ethanol and acetaldehyde treatment in a human fetal hepatic cell line. Toxicology 1997; 120 (2): 133-144. doi: 10.1016/s0300-483x(97)03650-0
  • 34. Wu D, Cederbaum AI. Ethanol cytotoxicity to a transfected HepG2 cell line expressing human cytochrome P4502E1 *. The Journal of Biological Chemistry 1996; 271 (39): 23914-23919. doi: 10.1074/jbc.271.39.23914
  • 35. Leu JG, Chen SA, Chen HM, Wu WM, Hung CF et al. The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomedicine: Nanotechnology, Biology and Medicine 2012; 8 (5): 767-775. doi: 10.1016/J.NANO.2011.08.013
  • 36. Lutterodt H, Luther M, Slavin M, Yin JJ, Parry J et al. Fatty acid profile, thymoquinone content, oxidative stability, and antioxidant properties of cold-pressed black cumin seed oils. LWT - Food Science and Technology 2010; 43 (9): 1409-1413. doi: 10.1016/J.LWT.2010.04.009
  • 37. Coelho JP, Cristino AF, Matos PG, Rauter AP, Nobre BP et al. Extraction of volatile oil from aromatic plants with supercritical carbon dioxide: experiments and modeling. Molecules 2012; 17 (9): 10550-10573. doi: 10.3390/molecules170910550
  • 38. Da Porto C, Decorti D, Tubaro F. Fatty acid composition and oxidation stability of hemp (Cannabis sativa L.) seed oil extracted by supercritical carbon dioxide. Industrial Crops and Products 2012; 36 (1): 401-404. doi: 10.1016/j.indcrop.2011.09.015
  • 39. European Medicines Agency (EMA). ICH Topic Q 2 B Validation of Analytical Procedures: Methodology. Step 4. Consensus Guideline. The European Agency for the Evaluation of Medicinal Products. Amsterdam, Netherlands: EMA, 1996.
  • 40. Daems N, Penninckx S, Nelissen I, Van Hoecke K, Cardinaels T et al. Gold nanoparticles affect the antioxidant status in selected normal human cells. International Journal of Nanomedicine 2019; 14: 4991-5015. doi: 10.2147/IJN.S203546
  • 41. Kyffin JA, Sharma P, Leedale J, Colley HE, Murdoch C et al. Impact of cell types and culture methods on the functionality of in vitro liver systems – a review of cell systems for hepatotoxicity assessment. Toxicology in Vitro 2018; 48: 262-275. doi: 10.1016/j.tiv.2018.01.023
  • 42. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. Nano-emulsions. Current Opinion in Colloid and Interface Science 2005; 10 (3-4): 102-110. doi: 10.1016/j.cocis.2005.06.004
  • 43. Chong WT, Tan CP, Cheah YK, Lajis AFB, Dian NLHM et al. Optimization of process parameters in preparation of tocotrienol-rich red palm oil-based nanoemulsion stabilized by Tween80-Span 80 using response surface methodology. PLoS ONE 2018; 13 (8): 1-22. doi: 10.1371/journal.pone.0202771
  • 44. Silva HD, Cerqueira MÂ, Vicente AA. Nanoemulsions for food applications: development and characterization. Food and Bioprocess Technology 2012; 5 (3): 854-867. doi: 10.1007/s11947-011-0683-7
  • 45. Araújo FA, Kelmann RG, Araújo B V, Finatto RB, Teixeira HF et al. Development and characterization of parenteral nanoemulsions containing thalidomide. European Journal of Pharmaceutical Sciences 2011; 42 (3): 238-245. doi: 10.1016/j.ejps.2010.11.014
  • 46. Gao F, Zhang Z, Bu H, Huang Y, Gao Z et al. Nanoemulsion improves the oral absorption of candesartan cilexetil in rats: performance and mechanism. Journal of Controlled Release 2011; 149 (2): 168-174. doi: 10.1016/j.jconrel.2010.10.013
  • 47. Preetz C, Hauser A, Hause G, Kramer A, Mäder K. Application of atomic force microscopy and ultrasonic resonator technology on nanoscale: distinction of nanoemulsions from nanocapsules. European Journal of Pharmaceutical Sciences 2010; 39 (1-3): 141-151. doi: 10.1016/j.ejps.2009.11.009
  • 48. Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences 2004; 74 (17): 2157-2184. doi: 10.1016/j.lfs.2003.09.047
  • 49. Kizil G, Kizil M, Yavuz M, Emen S, Hakimoğlu F. Antioxidant activities of ethanol extracts of Hypericum triquetrifolium and Hypericum scabroides. Pharmaceutical Biology 2008; 46 (4): 231-242. doi: 10.1080/13880200701739363
  • 50. Wu CR, Huang MY, Lin YT, Ju HY, Ching H. Antioxidant properties of Cortex Fraxini and its simple coumarins. Food Chemistry 2007; 104 (4): 1464-1471. doi: 10.1016/j.foodchem.2007.02.023
  • 51. Khalife KH, Lupidi G. Nonenzymatic reduction of thymoquinone in physiological conditions. Free Radical Research 2007; 41 (2): 153- 161. doi: 10.1080/10715760600978815
  • 52. Biswas A, Senthilkumar SR, Said HM. Effect of chronic alcohol exposure on folate uptake by liver mitochondria. American Journal of Physiology-Cell Physiology 2012; 302 (1): C203-C209. doi: 10.1152/ajpcell.00283.2011
  • 53. Cameron RG, Neuman MG, Shear NH, Katz G, Beleentani S et al. Modulation of liver-specific cellular response to ethanol in vitro in Hep G2 cells. Toxicology in Vitro 1998; 12 (2): 111-122. doi: 10.1016/S0887-2333(97)00095-7
  • 54. Schaffert CS, Todero SL, McVicker BL, Tuma PL, Sorrell MF et al. WIF-B cells as a model for alcohol-induced hepatocyte injury. Biochemical Pharmacology 2004; 67 (11): 2167-2174. doi: 10.1016/j.bcp.2004.01.022
  • 55. Pallardó FV, Markovic J, García JL, Viña J. Role of nuclear glutathione as a key regulator of cell proliferation. Molecular Aspects of Medicine 2009; 30 (1-2): 77-85. doi: 10.1016/j.mam.2009.01.001
  • 56. Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Molecular Aspects of Medicine 2009; 30 (1-2): 1-12. doi: 10.1016/j.mam.2008.08.006
  • 57. Meister A. Glutathione metabolism and its selective modification. Journal of Biological Chemistry 1988; 263 (33): 17205-17208.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK