Accelerated $Fe^{III}/Fe^{II}$ redox cycle of Fenton reaction system using $Pd/NH_2$ -MIL-101(Cr) and hydrogen

Accelerated $Fe^{III}/Fe^{II}$ redox cycle of Fenton reaction system using $Pd/NH_2$ -MIL-101(Cr) and hydrogen

In this paper, a novel improvement in the catalytic Fenton reaction system named $MHACF-NH_2$ -MIL-101(Cr) was constructed based on $H_2$ and $Pd/NH_2$ -MIL-101(Cr). The improved system would result in an accelerated reduction in $Fe^{III}$, and provide a continuous and fast degradation efficiency of the 10 mg $L-1 4$-chlorophenol which was the model contaminant by using only trace level FeII. The activity of $Pd/NH_2$ -MIL-101(Cr) decreased from 100% to about 35% gradually during the six consecutive reaction cycles of 18 h. That could be attributed to the irreversible structural damage of $NH_2$-MIL-101(Cr).

___

  • 1. Bautista P, Mohedano A, Casas J, Zazo J, Rodriguez J. An overview of the application of fenton oxidation to industrial wastewaters treatment. Journal of Chemical Technology & Biotechnology 2008; 83: 1323-1338.
  • 2. Guo S, Yuan N, Zhang G, Yu J. Graphene modified iron sludge derived from homogeneous fenton process as an efficient heterogeneous fenton catalyst for degradation of organic pollutants. Microporous and Mesoporous Materials 2017; 238: 62-68.
  • 3. Zhang Y, Zhou M. A critical review of the application of chelating agents to enable fenton and fenton-like reactions at high pH values. Journal of hazardous materials 2019; 362: 436-450.
  • 4. Monteil H, Péchaud Y, Oturan N, Oturan M. A review on efficiency and cost effectiveness of electro-and bio-electro-fenton processes: application to the treatment of pharmaceutical pollutants in water. Chemical Engineering Journal 2019; 376: 119577.
  • 5. Hou J, Chen Z, Gao J, Xie Y, Li L et al. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies. Water Research 2019; 159: 511-520.
  • 6. Liu X, Fan J, Ma L. Elimination of 4-chlorophenol in aqueous solution by the bimetallic Al–Fe/O2 at normal temperature and pressure. Chemical Engineering Journal 2014; 236: 274-284.
  • 7. Deng Y, Englehardt J. Treatment of landfill leachate by the Fenton process. Water Research 2006; 40: 3683-3694.
  • 8. Huang X, Hou X, Jia F, Song F, Zhao J et al. Ascorbate-promoted surface iron cycle for efficient heterogeneous fenton alachlor degradation with hematite nanocrystals. ACS Applied Materials & Interfaces 2017; 9: 8751-8758.
  • 9. Subramanian G, Madras G. Remarkable enhancement of fenton degradation at a wide pH range promoted by thioglycolic acid. Chemical Communications 2017; 53: 1136-1139.
  • 10. Ouyang Q, Kou F, Zhang N, Lian J, Tu G et al. Tea polyphenols promote fenton-like reaction: pH self-driving chelation and reduction mechanism. Chemical Engineering Journal 2019; 366: 514-522.
  • 11. Porras J, Giannakis S, Torres-Palma R, Fernandez J, Bensimon M et al. Fe and Cu in humic acid extracts modify bacterial inactivation pathways during solar disinfection and photo-fenton processes in water. Applied Catalysis B: Environmental 2018; 235: 75-83.
  • 12. Li X, Guo W, Liu Z, Wang R, Liu H. Quinone-modified NH2 -MIL-101 (Fe) composite as a redox mediator for improved degradation of bisphenol A. Journal of hazardous materials 2017; 324: 665-672.
  • 13. Yang Z, Yu A, Shan C, Gao G, Pan B. Enhanced Fe(III)-mediated fenton oxidation of atrazine in the presence of functionalized multiwalled carbon nanotubes. Water Research 2018; 137: 37-46.
  • 14. Pan Y, Su H, Zhu Y, Molamahmood H, Long M. $CaO_2$ based fenton-like reaction at neutral pH: accelerated reduction of ferric species and production of superoxide radicals. Water Research 2018; 145: 731-740.
  • 15. Georgi A, Polo M, Crincoli K, Mackenzie K, Kopinke F. Accelerated catalytic Fenton reaction with traces of iron: an Fe–Pd-multicatalysis approach. Environmental Science & Technology 2016; 50: 5882-5891.
  • 16. Liang Y, Pan X, Zhang C, Xie, B, Liu, S. The simulation and analysis of leakage and explosion at a renewable hydrogen refuelling station. International Journal of Hydrogen Energy 2019; 44: 22608-22619.
  • 17. Taylor M, Runčevski T, Oktawiec J, Bachman J, Siegelman R et al. Near-perfect $CO_2/CH_4$ selectivity achieved through reversible guest templating in the flexible metal–organic framework Co (bdp). Journal of the American Chemical Society 2018; 140: 10324-10331.
  • 18. Li J, Duan Q, Wu Z, Li X, Chen K et al. Few-layered metal-organic framework nanosheets as a highly selective and efficient scavenger for heavy metal pollution treatment. Chemical Engineering Journal 2020; 383: 123189.
  • 19. Zhang J, Sun L, Chen C, Liu M, Dong W et al. High performance humidity sensor based on metal organic framework MIL-101(Cr) nanoparticles. Journal of Alloys and Compounds 2017; 695: 520.
  • 20. Li Y, Xiao A, Zou B, Zou B, Zhang H et al. Advances of metal–organic frameworks for gas sensing. Polyhedron 2018; 154: 83-97.
  • 21. Kustov L, Isaeva V, Přech J, Bisht K. Metal-organic frameworks as materials for applications in sensors. Mendeleev Communications 2019; 29: 361-368.
  • 22. Park H, Dincă M, Román-Leshkov Y. Continuous-flow production of succinic anhydrides via catalytic β-lactone carbonylation by Co (CO) 4⊂ Cr-MIL-101. Journal of the American Chemical Society, 2018; 140: 10669-10672.
  • 23. Leszczyński M, Kornowicz A, Prochowicz D, Justyniak I, Noworyta K, et al. Straightforward synthesis of single-crystalline and redoxactive Cr (II)-carboxylate MOFs. Inorganic chemistry 2018; 57: 4803-4806.
  • 24. Chen H, He Y, Pfefferle L, Pu W, Wu Y et al. Phenol Catalytic hydrogenation over palladium nanoparticles supported on metal-organic frameworks in the aqueous phase. ChemCatChem 2018; 10: 2558-2570.
  • 25. Vinogradov V, Drozdov A, Mingabudinova L, Shabanova E, Kolchina N et al. Composites based on heparin and MIL-101(Fe): the drug releasing depot for anticoagulant therapy and advanced medical nanofabrication. Journal of Materials Chemistry B 2018; 6: 2450-2459.
  • 26. Kim S, Park C, Huh B, Lee S, Min C et al. Metal-organic frameworks, $NH_2$ -MIL-88 (Fe), as carriers for ophthalmic delivery of brimonidine. Acta Biomaterialia 2018; 79: 344-353.
  • 27. Wang H, Chen Y, Wang H, Liu X, Zhou X et al. DNAzyme-loaded metal-rrganic frameworks (MOFs) for self-sufficient gene therapy. Angewandte Chemie International Edition 2019; 58: 7380-7384.
  • 28. Li X, Yang X, Xue H, Pang H, Xu Q. Metal–organic frameworks as a platform for clean energy applications. EnergyChem 2020; 2: 100027.
  • 29. Chanchetti L, Leiva D, Faria L, Ishikawa T. A scientometric review of research in hydrogen storage materials. International Journal of Hydrogen Energy 2020; 45: 5356-5366.
  • 30. Zhao J, Xu L, Su Y, Yu H, Liu H et al. Zr-MOFs loaded on polyurethane foam by polydopamine for enhanced dye adsorption. Journal of Environmental Sciences 2021; 101: 177-188.
  • 31. Zhao C, Xu Y, Xiao F, Ma J, Zou Y et al. Perfluorooctane sulfonate removal by metal-organic frameworks (MOFs): insights into the effect and mechanism of metal nodes and organic ligands. Chemical Engineering Journal 2021; 406: 126852.
  • 32. Esrafili L, Firuzabadi F, Morsali A, Hu M et al. Reuse of predesigned dual-functional metal organic frameworks (DF-MOFs) after heavy metal removal. Journal of Hazardous Materials 2021; 403: 123696.
  • 33. Yu C, Ding Q, Hu J, Wang Q, Cui X et al. Selective capture of carbon dioxide from humid gases over a wide temperature range using a robust metal–organic framework. Chemical Engineering Journal 2021; 405: 126937.
  • 34. Wang Q, Meng L, Chen H, Zhang Z, Xu D et al. Selective $CO_2 or CH_4$ adsorption of two anionic bcu-MOFs with two different counterions: experimental and simulation studies. Inorganic Chemistry Frontiers 2020; Advance Article.
  • 35. Habila M, Alhenaki B, El-Marghany A, Sheikh M, Ghfar A et al. Metal organic frameworks enhanced dispersive solid phase microextraction of malathion before detection by UHPLC-MS/MS. Journal of Separation Science 2020; 43: 3103-3109.
  • 36. Zhang Y, Liu J, Wu X, Tao W, Li Z. Ultrasensitive detection of Cr$(VI) (Cr_2O_7^{2-}/CrO^4 _{2-})$ ions in water environment with a fluorescent sensor based on metal-organic frameworks combined with sulfur quantum dots. Analytica Chimica Acta 2020; 1131: 68-79.
  • 37. Veeramani V, Matsagar B, Yamauchi Y, Badjah A, Naushad M et al. Metal organic framework derived nickel phosphide/graphitic carbon hybrid for electrochemical hydrogen generation reaction. Engineers 2019; 634-638.
  • 38. Liu S, Zhang C, Sun Y, Chen Q, He L et al. Design of metal-organic framework-based photocatalysts for hydrogen generation. Coordination Chemistry Reviews 2020; 413: 213266.
  • 39. Yuan N, Pascanu V, Huang Z, Valiente A, Heidenreich N et al. Probing the evolution of palladium species in Pd@MOF catalysts during the heck coupling reaction: an operando X-ray absorption spectroscopy study. Journal of the American Chemical Society 2018; 140: 8206- 8217.
  • 40. Niu H, Zheng Y, Wang S, Zhao L, Yang S et al. Continuous generation of hydroxyl radicals for highly efficient elimination of chlorophenols and phenols catalyzed by heterogeneous Fenton-like catalysts yolk/shell Pd@$Fe_3O_4$ @metal organic frameworks. Journal of Hazardous Materials 2018; 346: 174-183.
  • 41. Alamgholiloo H, Zhang S, Ahadi A, Rostamnia S, Banaei R et al. Synthesis of bimetallic 4-PySI-Pd@ Cu(BDC) via open metal site CuMOF: effect of metal and support of Pd@Cu-MOFs in $H_2$ generation from formic acid. Molecular Catalysis 2019; 467: 30-37.
  • 42. Malouche A, Zlotea C, Szilágyi P. Interactions of hydrogen with Pd@ MOF composites. ChemPhysChem 2019; 20: 1282-1295.
  • 43. Alamgholiloo H, Rostamnia S, Hassankhani A, Liu X, Eftekhari A et al. Formation and stabilization of colloidal ultra-small palladium nanoparticles on diamine-modified Cr-MIL-101: synergic boost to hydrogen production from formic acid. Journal of Colloid and Interface Science 2020; 567: 126-135.
  • 44. Liu X, Gao S, Fan J, Li X, Qin H et al. The construction of accelerated catalytic Fenton reaction based on Pd/MIL-101(Cr) and $H2$. New Journal of Chemistry 2019; 43: 8179-8188.
  • 45. Liu X, Fan J, Liu Z, Yu Y, You J et al. Elimination of 4-chlorophenol in aqueous solution by the novel Pd/MIL-101(Cr)-hydrogen-accelerated catalytic fenton system. Applied Organometallic Chemistry 2019; 33: e5194.
  • 46. Lou Z, Xu J, Zhou J, Yang K, Cao Z et al. Insight into atomic H* generation, $H_2$ evolution, and cathode potential of $MnO_2$ induced Pd/Ni foam cathode for electrocatalytic hydrodechlorination. Chemical Engineering Journal 2019; 374: 211-220.
  • 47. Hassan H, Betiha M, Mohamed S, El-Sharkawy E, Ahmed E. Salen-Zr(IV) complex grafted into amine-tagged MIL-101(Cr) as a robust multifunctional catalyst for biodiesel production and organic transformation reactions. Applied Surface Science 2017; 412: 394-404.
  • 48. Saikia M, Kaichev V, Saikia L. Gold nanoparticles supported on nanoscale amine-functionalized MIL-101(Cr) as a highly active catalyst for epoxidation of styrene. RSC advances 2016; 6: 106856-106865.
  • 49. Lee Y, Yu K, Ravi S, Ahn W. Selective adsorption of rare earth elements over functionalized Cr-MIL-101. ACS applied materials & interfaces 2018; 10: 23918-23927.
  • 50. Gaikwad S, Kim S, Han S. $CO_2$ capture using amine-functionalized bimetallic MIL-101 MOFs and their stability on exposure to humid air and acid gases. Microporous and Mesoporous Materials 2019; 277: 253-260.
  • 51. Xie F, Zhang N, Zhuo L, Qin P, Chen S et al. “MOF-cloth” formed via supramolecular assembly of $NH_2$ -MIL-101(Cr) crystals on dopamine modified polyimide fiber for high temperature fume paper-based filter. Composites Part B: Engineering 2019; 168: 406-412.
  • 52. Lawson S, Griffin C, Rapp K, Rownaghi A, Rezaei F. Amine-functionalized MIL-101 monoliths for $CO_2$ removal from enclosed environments. Energy & Fuels 2019; 33: 2399-2407.
  • 53. Wen M, Mori K, Kamegawa T, Yamashita H. Amine-functionalized MIL-101(Cr) with imbedded platinum nanoparticles as a durable photocatalyst for hydrogen production from water. Chemical Communications 2014; 50: 11645-11648.
  • 54. Zhong R, Yu X, Meng W, Liu J, Zhi C et al. Amine-grafted MIL-101 (Cr) via double-solvent incorporation for synergistic enhancement of $CO_2$ uptake and selectivity. ACS Sustainable Chemistry & Engineering 2015; 6: 16493-16502.
  • 55. Berenguer-Murcia Á, Marco-Lozar J. Cazorla-Amorós D. Hydrogen storage in porous materials: status, milestones, and challenges. The Chemical Record 2018; 18: 900-912.
  • 56. García-Holley P, Schweitzer B, Islamoglu T, Liu Y, Lin L et al. Benchmark study of hydrogen storage in metal–organic frameworks under temperature and pressure swing conditions. ACS Energy Letters 2018; 3: 748-754.
  • 57. Ma J, Ying Y, Guo X, Huang H, Liu D et al. Fabrication of mixed-matrix membrane containing metal–organic framework composite with task-specific ionic liquid for efficient $CO_2$ separation. Journal of Materials Chemistry A 2016; 4: 7281-7288.
  • 58. Chen J, Liu R, Guo Y, Chen L, Gao H. Selective hydrogenation of biomass-based 5-hydroxymethylfurfural over catalyst of palladium immobilized on amine-functionalized metal–organic frameworks. Acs Catalysis 2014; 5: 722-733.
  • 59. Pang S, Jiang J, Ma J. Oxidation of sulfoxides and arsenic (III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction. Environmental science & technology 2011; 45: 307-312.
  • 60. Nogueira R, Oliveira M, Paterlini W. Simple and fast spectrophotometric determination of $H_2$ O2 in photo-Fenton reactions using metavanadate. Talanta 2005; 66: 86-91.
  • 61. Zhong W, Wang D, Wang Z. Distribution and potential ecological risk of 50 phenolic compounds in three rivers in Tianjin, China. Environmental Pollution 2018; 235: 121-128.
  • 62. Munoz M, Pedro Z, Casas J, Rodriguez J. Assessment of the generation of chlorinated byproducts upon fenton-like oxidation of chlorophenols at different conditions. Journal of Hazardous Materials 2011; 190: 993-1000.
  • 63. Zhou T, Li Y, Ji J, Wong F, Lu X. Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/$H_2O_2$ fenton-like system: kinetic, pathway and effect factors. Separation and Purification Technology 2008; 62: 551-558.
  • 64. Liu B, Yang F, Zou Y, Peng Y. Adsorption of phenol and p-nitrophenol from aqueous solutions on metal–organic frameworks: effect of hydrogen bonding. Journal of Chemical & Engineering Data 2014; 59: 1476-1482.
  • 65. Wang K, Huang H, Xue W, Liu D, Zhao X et al. An ultrastable Zr metal–organic framework with a thiophene-type ligand containing methyl groups. CrystEngComm 2015; 17: 3586-3590.
  • 66. Yuan S, Qin J, Lollar C, Zhou H. Stable metal–organic frameworks with group 4 metals: current status and trends. ACS central science 2018; 4: 440-450.