Electrophoretic deposition and characterization of self-doped $SrTiO_3$ thin films

Electrophoretic deposition and characterization of self-doped $SrTiO_3$ thin films

Herein, titanium $(Ti^{3+})$ self-doped strontium titanate $(SrTiO_3)$ , so-called blue $SrTiO_3$ , with a bandgap of 2.6 eV and favorable photocatalytic characteristics was fabricated through a facile and effective method. For electrochemical investigations, the electrophoretic deposition was applied to produce $SrTiO_3$thin films on (fluorine-doped tin oxide) FTO conductive substrates. The electrophoretic voltage of 20 V and a process duration of 10 min were optimized to reach transparent and uniform coatings on FTO. The blue $SrTiO_3$ reveals lower resistance (charge transfer resistance of 6.38 Ω cm−2) and higher electron mobility (current density value of 0.25 mA cm−2) compared to a pure $SrTiO_3$ electrode. These findings may provide new insights for developing high-performance visible light photocatalysts

___

  • 1. Navarro RM, Pena MA, Fierro JLG. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chemical Reviews 2007; 107 (10): 3952-3991. doi: 10.1021/cr0501994
  • 2. Armor JN. The multiple roles for catalysis in the production of $H_2$. Applied Catalysis A: General 1999; 176 (2): 159-176. doi: 10.1016/S0926- 860X(98)00244-0
  • 3. Trimm DL, Önsan ZI. Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles. Catalysis Reviews 2001; 43 (1-2): 31-84. doi: 10.1081/CR-100104386
  • 4. Kudo A. New materials for photocatalytic and photoelectrochemical water splitting. AIP Conference Proceedings 2013; 1568 (1): 7-10. doi: 10.1063/1.4848079
  • 5. Liu JW, Chen G, Li ZH, Zhang ZG. Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3. Journal of Solid State Chemistry 2006; 179 (12): 3704-3708. doi: 10.1016/j.jssc.2006.08.014
  • 6. Wang DW, Lee JS, Li W, Oh SH. Electronic band structure and photocatalytic activity of Ln2 $Ti_2O_7$ (Ln = La, Pr, Nd). The Journal of Physical Chemistry B 2003; 107 (21): 4963-4970. doi: 10.1021/jp034229n
  • 7. Yamasita D, Takata T, Hara M, Kondo JN, Domen K. Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Sonics 2004; 172 (1-4): 591-595. doi: 10.1016/j.ssi.2004.04.033
  • 8. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972; 238 (5358): 37-38. doi: 10.1038/238038a0
  • 9. Navarro Yerga RM, Álvarez Galván MC, Del Valle F, Villoria De La Mano JA, Fierro JL. Water splitting on semiconductor catalysts under visible‐light irradiation. ChemSusChem: Chemistry & Sustainability Energy & Materials 2009; 2 (6): 471-485. doi: 10.1002/cssc.200900018
  • 10. Osterloh FE. Inorganic materials as catalysts for photochemical splitting of water. Chemistry of Materials 2008; 20 (1): 35-54. doi: 10.1021/ cm7024203
  • 11. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009; 38 (1): 253-278. doi: 10.1039/ b800489g
  • 12. Liu Y, Xie L, Li Y, Yang R, Qu J et al. Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation. Journal of Power Sources 2008; 183 (2): 701-707. doi: 10.1016/j.jpowsour.2008.05.057
  • 13. Maeda K, Domen K. New non-oxide photocatalysts designed for overall water splitting under visible light. The Journal of Physical Chemistry C 2007; 111 (22): 7851-7861 doi: 10.1021/jp070911w
  • 14. Swierk JR, Regan KP, Jiang J, Brudvig GW, Schmuttenmaer CA. Rutile $TiO_2$ as an anode material for water-splitting dye-sensitized photoelectrochemical cells. American Chemical Society Energy Letters 2016; 1 (3): 603-606. doi: 10.1021/acsenergylett.6b00279
  • 15. Dong Z, Ding D, Li T, Ning C. Ni-doped $TiO_2$ nanotubes photoanode for enhanced photoelectrochemical water splitting. Applied Surface Science 2018; 443: 321-328. doi: 10.1016/j.apsusc.2018.03.031
  • 16. Yang Y, Pu YC, Li Y, Zhang J. Oxygen deficient $TiO_2$ photoanode for photoelectrochemical water oxidation. Solid State Phenomena 2016; 253: 11-40. doi: 10.4028/www.scientific.net/SSP.253.11
  • 17. Sangle AL, Singh S. Jian J, Bajpe SR, Wang H et al. Very high surface area mesoporous thin films of $SrTiO_3$ grown by pulsed laser deposition and application to efficient photoelectrochemical water splitting. Nano Letters 2016; 16 (12): 7338-7345. doi: 10.1021/acs.nanolett.6b02487
  • 18. Hong Y, Fang Z, Yin B, Luo B, Zhao Y et al. A visible-light-driven heterojunction for enhanced photocatalytic water splitting over $Ta_2O_5$ modified g-C3N4 photocatalyst. International Journal of Hydrogen Energy 2017; 42 (10): 6738-6745. doi: 10.1016/j.ijhydene.2016.12.055
  • 19. Pan SH, Shi JJ, Zhang M, Wu M, Cen YL et al. Photocatalytic performance enhancement of two-dimensional Ruddlesden-Popper type perovskite $K_2 La_2Ti_3$ O10 by nitrogen-doping. Materials Research Express 2019; 6 (7): 075047. doi: 10.1016/j.cej.2007.09.011
  • 20. Liu X, Que W, Xing Y, Yang Y, Yin X et al. New architecture of a petal-shaped $Nb_2O_5$ nanosheet film on FTO glass for high photocatalytic activity. RSC Advances 2016; 6 (12): 9581-9588. doi: 10.1039/c5ra21516a
  • 21. Sivula K, Le Formal F, Grätzel M. Solar water splitting: progress using hematite $(α‐Fe_2O_3)$ photoelectrodes. ChemSusChem 2011; 4 (4):432-449. doi: 10.1002/cssc.201000416
  • 22. Jia Q, Iwashina K, Kudo A. Facile fabrication of an efficient $BiVO_4$ thin film electrode for water splitting under visible light irradiation. Proceedings of the National Academy of Sciences 2012; 109 (29): 11564-11569. doi: 10.1073/pnas.1204623109
  • 23. Patial S, Hasija V, Raizada P, Singh P, Singh AAPK et al. Tunable photocatalytic activity of $SrTiO_3$ for water splitting: strategies and future scenario. Journal of Environmental Chemical Engineering 2020; 8 (3): 103791. doi: 10.1016/j.jece.2020.103791
  • 24. Klusáčková M, Nebel R, Macounová KM, Klementova M, Krtil P. Size control of the photo-electrochemical water splitting activity of $SrTiO_3$ nano-cubes. Electrochimica Acta 2019; 297: 215-222. doi: 10.1016/j.electacta.2018.11.185
  • 25. Sulaeman U, Yin S, Sato T. Solvothermal synthesis and photocatalytic properties of nitrogen-doped $SrTiO_3$ nanoparticles. Journal of Nanomaterials 2010. doi: 10.1155/2010/629727
  • 26. Chen W, Liu H, Li X, Liu S, Gao L et al. Polymerizable complex synthesis of $SrTiO_3$: (Cr/Ta) photocatalysts to improve photocatalytic water splitting activity under visible light. Applied Catalysis B: Environmental 2016; 192 : 145-151. doi: 10.1016/j.apcatb.2016.03.057
  • 27. Suzuki S, Iwase A, Kudo A. Long wavelength visible light-responsive SrTiO3 photocatalysts doped with valence-controlled Ru for sacrificial$H_2 and O_2$ evolution. Catalysis Science & Technology 2020; 10: 4912. doi: 10.1039/d0cy00600a
  • 28. Zwara J, Paszkiewicz-Gawron M, Łuczak J, Pancielejko A, Lisowski W et al. The effect of imidazolium ionic liquid on the morphology of Pt nanoparticles deposited on the surface of $SrTiO_3$ and photoactivity of Pt–$SrTiO_3$ composite in the $H_2$ generation reaction. International Journal of Hydrogen Energy 2019; 44 (48): 26308-26321. doi: 10.1016/j.ijhydene.2019.08.094
  • 29. Mishra V, Sati A, Warshi MK, Phatangare AB, Dhole S et al. Effect of electron irradiation on the optical properties of $SrTiO_3$: an experimental and theoretical investigations. Materials Research Express 2018; 5 (3): 036210. doi: 10.1088/2053-1591/aab6f5
  • 30. Hou X, Shang M, Bi Y, Jiao Z. Synthesis of $Ti^{3+}$ self-doped $SrTiO_3 /TiO_2$ hetero-photoanodes with enhanced photoelectrochemical performances under visible light. Materials Letters 2016; 176: 270-273. doi: 10.1016/j.matlet.2016.04.139
  • 31. Tan H, Zhao Z, Zhu WB, Coker EN, Li B et al. Oxygen vacancy enhanced photocatalytic activity of pervoskite $SrTiO_3$ . American Chemical Society Applied Materials & Interfaces 2014; 6 (21) : 19184-19190. doi: 10.1021/am5051907
  • 32. Ariyanti D, Mills L, Dong J, Yao Y, Gao W, NaBH4 modified $TiO_2$: defect site enhancement related to its photocatalytic activity. Materials Chemistry and Physics 2017; 199: 571-576. doi: 10.1016/j.matchemphys.2017.07.054
  • 33. Peighambardoust NS, Asl SK, Mohammadpour R. Band-gap narrowing and electrochemical properties in N-doped and reduced anodic $TiO_2$ nanotube arrays. Electrochimica Acta 2018; 270: 245-255. doi: 10.1016/j.electacta.2018.03.091