The role of some metal ions in enhancement of photocatalytic activity of $Fe_2O_3–V_2O_5$ binary oxide

The role of some metal ions in enhancement of photocatalytic activity of $Fe_2O_3–V_2O_5$ binary oxide

$Fe_2O_3–V_2O_5$ mixed oxides were synthesized with solid-state dispersion (SSD) and coprecipitation methods. In addition, transition metal oxides such as CuO, NiO, and Co3O4 were successfully loaded on the synthesized catalyst $(Fe_2O_3–V_2O_5($using the SSD method. The composite catalysts were inspected for their photocatalytic activities in degrading 2,4-dichlorophenol under UV light enforcement. The produced samples were analyzed using X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, diffuse reflectance spectroscopy, scanning electron microscopy, photoluminescence, and the Brunauer–Emmett– Teller method. The addition of transition metal oxides improved the photocatalytic activity of $Fe_2O_3–V_2O_5$ (SSD). 1CuO wt% $Fe_2O_3–V_2O_5$ exhibited the highest percentage of 2,4-dichlorophenol degradation (100%) and the highest reaction rate (1.83 mg/L min) in 30 min.This finding is attributed to the distribution of CuO.

___

  • 1. Melian EP, Diaz OG, Rodriguez JMD, Arana J, Pena JP. Adsorption and photocatalytic degradation of 2,4-dichlorophenol in$TiO_2$ suspensions. Effect of hydrogen peroxide, sodium peroxodisulphate and ozone. Applied Catalysis A: General 2013; 30: 227-233. doi: 10.1016/j.apcata.2013.02.007
  • 2. Seftel EM, Puscasu MC, Mertens M, Cool P, Carja G. Assemblies of nanoparticles of CeO2 –ZnTi-LDHs and their derived mixed oxides as novel photocatalytic systems for phenol degradation. Applied Catalysis B: Environmental 2014; 150: 157-166. doi: 10.1016/j. apcatb.2013.12.019
  • 3. Rasalingam S, Kibombo HS, Wu CM, Peng R, Baltrusaitis J et al. Competitive role of structural properties of titania–silica mixed oxides and a mechanistic study of the photocatalytic degradation of phenol. Applied Catalysis B: Environmental 2014; 148: 394-405. doi: 10.1016/j.apcatb.2013.11.025
  • 4. Scott-Emuakpor EO, Kruth A, Todd MJ, Raab A, Paton GI et al. Remediation of 2,4-dichlorophenol contaminated water by visible light-enhanced WO3 photoelectrocatalysis. Applied Catalysis B: Environmental 2012; 123: 433-439. doi: 10.1016/j.apcatb.2012.05.010
  • 5. Chung SG, Chang YS, Choi JW, Baek KY, Hong SW et al. Photocatalytic degradation of chlorophenols using star block copolymers: removal efficiency, by-products and toxicity of catalyst. Chemical Engineering Journal 2013; 215: 921-928. doi: 10.1016/j.cej.2012.11.070
  • 6. Christoforidis KC, Louloudi M, Deligiannakis Y. Complete dechlorination of pentachlorophenol by a heterogenous SiO2 –Fe–porphyrin catalyst. Applied Catalysis B: Environmental 2012; 95: 297-302. doi: 10.1016/j.apcatb.2010.01.007
  • 7. Titus MP, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental 2004; 47: 219-256. doi: 10.1016/j.apcatb.2003.09.010
  • 8. Dobrosz-Gomez I, Gomez-Garcia MA, Zamora SML, Pavas EG, Bojarska J et al. Transition metal loaded TiO2 for phenol photodegradation. C. R. Chim. 2015; 18: 1170-1182. doi: 10.1016/j.crci.2015.03.006
  • 9. Lei M, Wang N, Zhu L, Zhou Q, Nie G et al. Photocatalytic reductive degradation of polybrominated diphenyl ethers on $CuO/TiO_2$ nanocomposites: a mechanism based on the switching of photocatalytic reduction potential being controlled by the valence state of copper. Applied Catalysis B: Environmental. 2016; 182: 414-423. doi: 10.1016/j.apcatb.2015.09.031
  • 10. Xie J, Zhou Z, Lian Y, Hao Y, Li P et al. Synthesis of $α-Fe_2O_3$ /ZnO composites for photocatalytic degradation of pentachlorophenol under UV–vis light irradiation. Ceramic International 2015; 41: 2622-2625. doi: 10.1016/j.ceramint.2014.10.043.
  • 11. Sherly ED, Vijaya JJ, Kennedy LJ, Visible-light-induced photocatalytic performances of ZnO–CuO nanocomposites for degradation of 2,4-dichlorophenol. Chinese Journal Catalysis 2015; 36: 1263-1272. doi: 10.1016/S1872-2067(15)60886-5
  • 12. Vignesh K, Suganthi A, Rajarajan M, Sara SA. Photocatalytic activity of AgI sensitized ZnO nanoparticles under visible light irradiation. Powder Technology 2012; 224: 331-337. doi: 10.1016/j.powtec.2012.03.015.
  • 13. Vignesh K, Hariharan R, Rajarajan M, Suganthi A. Visible light assisted photo catalytic activity of $TiO_2$ -metal vanadate (M = Sr, Ag and Cd) nanocomposites. Materials Science in Semiconductor Processing 2013; 16: 1521-1530. doi: 10.1016/j.mssp.2013.04.025
  • 14. Xie L, Liu P, Zheng Z, Weng S, Huang J. Morphology engineering of $V_2O_5/TiO_2$ nanocomposites with enhanced visible light-driven photofunctions for arsenic removal. Applied Catalysis B: Environmental 2016; 184: 347-354. doi: 10.1016/j.apcatb.2015.11.014
  • 15. Alsam M, Ismail IMI, Almeelbi T, Salah N, Chandrasekaran S et al. Enhanced photocatalytic activity of $V_2O_5–ZnO$ composites for the mineralization of nitrophenols. Chemosphere 2014; 117: 115-123. doi: 10.1016/j.chemosphere.2014.05.076
  • 16. Mishra M, Park H, Chun DM. Photocatalytic properties of $Au/Fe_2O_3$ nano-composites prepared by co-precipitation. Advanced Powder Technology 2016; 27: 130-138. doi: 10.1016/j.apt.2015.11.009
  • 17. Li J, Zhao W, Guo Y, Wei, Z, Han M et al. Facile synthesis and high activity of novel $BiVO_4/FeVO_4$ heterojunction photocatalyst for degradation of metronidazole. Applied Surface Science 2015; 351: 270-279. doi: 10.1016/j.apsusc.2015.05.134.
  • 18. Xu Z, Deng S, Yang Y, Zhang T, Cao Q et al. Catalytic destruction of pentachlorobenzene in simulated flue gas by a $V_2 O_5–WO_3/TiO_2$ catalyst. Chemosphere 2012; 87: 1032-1038. doi: 10.1016/j.chemosphere.2012.01.004
  • 19. Liua Q, Liao L, Liu Z, Dong X. Hydrogen production by glycerol reforming in supercritical water over $Ni/MgO-ZrO_2$ catalyst. Journal of Energy Chemistry 2013; 22: 665-670. doi: 10.1016/s2095-4956(13)60088-1
  • 20. Yang W, Tan G, Huang J, Ren H, Xia A et al. Enhanced magnetic property and photocatalytic activity of UV-light responsive N-doped$Fe_2O_3/FeVO_4$ heterojunction. Ceramics International 2015; 41: 1495-1503. doi: 10.1016/j.ceramint.2014.09.084
  • 21. Kim S, Hwang S, Choi W, Visible light active platinum-ion-doped $TiO_2$ photocatalyst. The Journal of Physical Chemistry B 2005; 109: 24260-24267. doi: 10.1021/jp055278y
  • 22. Kemp TJ, McIntyre RA. Transition metal-doped titanium(IV) dioxide: characterisation and influence on photodegradation of poly(vinyl chloride). Polymer Degradation and Stability 2006; 91: 165-194. doi: 10.1016/j.polymdegradstab.2005.04.033
  • 23. Tseng I, Wu JCS, Chou H. Effects of sol–gel procedures on the photocatalysis of $Cu/TiO_2 in CO_2$ photoreduction. Journal of Catalysis 2004; 221: 432-440. doi: 10.1016/j.jcat.2003.09.002
  • 24. Zhu J, Zheng W, He B, Zhang J, Anpo M. Characterization of $Fe-TiO_2$ photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for degradation of XRG dye diluted in water. Journal of Molecular Catalysis A: Chemical 2004; 216, 35-43. doi: 10.1016/j.molcata.2004.01.008
  • 25. An H, Li J, Zhou J, Li K, Zhu B, Huang W. Iron-coated $TiO_2$ nanotubes and their photocatalytic performance. Journal of Material Chemistry 2010; 20: 603-610. doi: 10.1039/b908226c
  • 26. Khan MA, Woo SI, Yang OB. Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction. International Journal of Hydrogen Energy 2008; 33: 5345-5351. doi: 10.1016/j.ijhydene.2008.07.119
  • 27. Zhou M, Yu J, Cheng B. Effects of Fe-doping on the photocatalytic activity of mesoporous $TiO_2$ powders prepared by an ultrasonic method. Journal of Hazardous Materials 2006; 137: 1838-1847. doi: 10.1016/j.jhazmat.2006.05.028
  • 28. Janes R, Knightley LJ, Harding CJ. Structural and spectroscopic studies of iron (III) doped titania powders prepared by sol-gel synthesis and hydrothermal processing. Dyes and Pigments 2004; 62: 199-212. doi: 10.1016/j.dyepig.2003.12.003
  • 29. Pozan GS, Isleyen M, Gokcen S. Transition metal coated $TiO_2$ nanoparticles: synthesis, characterization and their photocatalytic activity. Applied Catalysis B: Environmental. 2013; 140-141: 537-545. doi: 10.1016/j.apcatb.2013.04.040
  • 30. Bandara J, Klehm U, Kiwi J. Raschig rings-$Fe_2O_3$ composite photocatalyst activate in the degradation of 4-chlorophenol and orange II under daylight irradiation. Applied Catalysis B: Environmental 2007, 76: 73-81. doi: 10.1016/j.apcatb.2007.05.007
  • 31. Liang H, Liu K, Ni Y. Synthesis of mesoporous α-Fe2O3 via sol–gel methods using cellulose nano-crystals (CNC) as template and its photo-catalytic properties. Materials Letters 2015; 159: 218-220. doi: 10.1016/j.matlet.2015.06.103
  • 32. Narayana KV, Masthan SK, Rao VV, Raju BD, Rao PK. Influence of V2O5 content on ammoxidation of 3-picoline over V2O5/AlF3 catalysts. Catalysis Communications. 2002; 3: 173-178. doi: 10.1016/S1566-7367(02)00072-9
  • 33. Xia J, Yuan C, Yanagida S. Novel counter electrode $V_2O_5$ /Al for solid dye-sensitized solar cells. ACS Applied Materials Interfaces 2010; 2: 2136-2139. doi: 10.1021/am100380w.
  • 34. Raj AD, Pazhanivel T, Kumar PS, Mangalaraj D, Nataraj D et al. Self assembled $V_2O_5$ nanorods for gas sensors. Current Applied Physics 2010; 10: 531-537. doi: 10.1016/j.cap.2009.07.015
  • 35. Bates JB, Dudney NJ, Gruzalski GR, Zur RA, Choudhuri A et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. Journal of Power Sources. 1993; 43: 103-110. doi: 0.1016/0378-7753(93)80106-Y
  • 36. Yin H, Yu K, Pengn H, Zhang Z, Huang R et al. Porous $V_2O_5$ micro/nano-tubes: synthesis via a CVD route, single-tube-based humidity sensor and improved Li-ion storage properties. Journal of Materials Chemistry 2012; 22: 5013-5019. doi: 10.1039/C2JM15494C
  • 37. Wang Y, Zhang HJ, Siah KW, Wong CC, Lin J et al. One pot synthesis of self-assembled $V_2O_5$ nanobelt membrane via capsule-like hydrated precursor as improved cathode for Li-ion battery. Journal of Materials Chemistry 2011; 21: 10336-10341. doi: 10.1039/C1JM10783F
  • 38. Suresh R, Giribabu K, Manigandan R, Munusamy S, Kumar SP et al. Doping of Co into $V_2O_5$ nanoparticles enhances photodegradation of methylene blue. Journal of Alloys and Compounds 2014; 598: 151-160. doi: 10.1016/j.jallcom.2014.02.041
  • 39. Tanarungsun G, Kiatkittipong W, Praserthdam P, Yamada H, Tagawa T et al. Ternary metal oxide catalysts for selective oxidation of benzene to phenol. Journal of Industrial and Engineering Chemistry 2008; 14: 596-601. doi: 10.1016/j.jiec.2008.04.005
  • 40. Dias APS, Dimitrov LD, Oliveira MC-R, Zavoianu R, Fernandes A et al. Oxidative dehydrogenation of butane over substoichiometric magnesium vanadate catalysts prepared by citrate route. Journal of Non-Crystalline Solids 2010; 356: 1488-1497. doi: 10.1016/j. jnoncrysol.2010.04.042
  • 41. Haggblad R, Massa M, Andersson A. Stability and performance of supported Fe–V- oxide catalysts in methanol oxidation. Journal of Catalysis 2009; 266: 218-227. doi: 10.1016/j.jcat.2009.06.010
  • 42. He Z, Xie L, Song S, Wang C, Tu J et al. The impact of silver modification on the catalytic activity of iodine-doped titania for p-chlorophenol degradation under visible-light irradiation. Journal of Molecular Catalalysis A: Chemical 2010; 319: 78-84. doi: 10.1016/j. molcata.2009.12.003
  • 43. Wang C, Yin L, Zhang L, Xiang D, Gao R. Metal oxide gas sensors: sensitivity and influencing factors. Sensors. 2010; 10: 2088-2106. doi:10.3390/s100302088
  • 44. Sathishkumar P, Mangalaraja RV, Anandan S, Ashokkumar M. Co$Fe_2O_4/TiO_2$ nanocatalysts for the photocatalytic degradation of reactive red 120 in aqueous solutions in the presence and absence of electron acceptors. Chemical Engineering Journal 2013; 220: 302-310. doi: 10.1016/j.cej.2013.01.036
  • 45. Benhebal H, Chaib M, Salmon T, Geens J, Leonard A et al. Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process. Alexandria Engineering Journal 2013; 52: 517-523. doi: 10.1016/j.aej.2013.04.005
  • 46. Chen Z, Shi E, Li W, Zheng Y, Zhong W. Hydrothermal synthesis and optical property of nano-sized $CoAl_2O_4$pigment. Materials Letters 2002, 55: 281-284. doi: 10.1016/S0167-577X(02)00378-6
  • 47. Kanna M, Wongnawa S. Mixed amorphous and nanocrystalline $TiO_2$ powders prepared by sol–gel method: characterization and photocatalytic study. Materials Chemistry and Physics 2008; 110: 166-175. doi: 10.1016/j.matchemphys.2008.01.037
  • 48. Magg N, Immaraporn B, Giorgi JB, Schroeder T, Baumer M et al. Vibrational spectra of alumina- and silica-supported vanadia revisited: an experimental and theoretical model catalyst study. Journal of Catalysis 2004; 226: 88-100. doi: 10.1016/j.jcat.2004.04.021
  • 49. Jacintho GVM, Brolo AG, Corio P, Suarez PAZ, Rubim JC. Structural investigation of M$Fe_2O_4$ (M) Fe, Co) magnetic fluids. Journal of Physical Chemistry C 2009; 113: 7684-7691. doi: 10.1021/jp9013477
  • 50. Ozturk B, Soylu GSP. Synthesis of surfactant-assisted FeVO4 nanostructure: characterization and photocatalytic degradation of phenol. Journal of Molecular Catalalysis A: Chemical 2015; 398: 65-71. doi: 10.1016/j.molcata.2014.11.013
  • 51. Zhou Y, Liu H, Yang J, Mao J, Dong CK et al. Scalable synthesis of cubic Cu1.4S nanoparticles with long-term stability by laser ablation of salt powder. Chemical Communications 2016; 52: 811-814. doi: 10.1039/C5CC08656F
  • 52. Hou C, Lang XY, Wen Z, Zhu YF, Zhao M et al. Single-crystalline $Ni(OH)_2$ nanosheets vertically aligned on a three-dimensional nanoporous metal for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A 2015; 3, 23412-23419. doi: 10.1039/C5TA05335H
  • 53. Wang B, Li S, Wu X, Liu J, Tian W et al. Self-assembly of ultrathin mesoporous $CoMoO_4$ nanosheet networks on flexible carbon fabric as a binder-free anode for lithium-ion batteries. New Journal of Chemistry 2016; 40: 2259-2267. doi: 10.1039/C5NJ02910D
  • 54. Xu YM, Langford CH. Variation of langmuir adsorption constant determined for TiO2 -photocatalyzed degradation of acetophenone under different light intensity. Journal of Photochemistry and Photobiology A: Chemistry 2000; 133, 67-71.
  • 55. Liu Z, Sun DD, Guo P, Leckie JO. An efficient bicomponent $TiO_2/SnO_2$ nanofiber photocatalyst fabricated by electrospinning with a sideby-side dual spinneret method. Nano Letters 2007; 7: 1081-1085. doi: 10.1021/nl061898e
  • 56. Xu YM, Langford CH. Variation of langmuir adsorption constant determined for $TiO_2$ photocatalyzed degradation of acetophenone under different light intensity. Journal of Photochemistry and Photobiology A: Chemistry 2000, 133: 67-71. doi: 10.1016/S1010-6030(00)00220-3
  • 57. Zhong JB, Li, JZ, Xiao ZH, Hu W, Zhou XB et al. Improved photocatalytic performance of ZnO prepared by sol–gel method with the assistance of CTAB. Materials Letters 2012; 91: 301-303. doi: 10.1016/j.matlet.2012.10.040
  • 58. Satheesh R, Vignesh K, Suganthi A, Rajarajan M. Visible light responsive photocatalytic applications of transition metal (M = Cu, Ni and Co) doped $α-Fe_2O_3$ nanoparticles. Journal of Environmental Chemical Engineering 2014; 2: 1956-1968. doi: 10.1016/j.jece.2014.08.016
  • 59. Park Y, Kim SK, Pradhan D, Sohn Y. Surface treatment effects on CO oxidation reactions over Co, Cu, and Ni-doped and codoped$CeO_2$ catalysts. Chemical Engineering Journal 2014; 250: 25-34. doi: 10.1016/j.cej.2014.03.070 60. Yu J, Ran J. Facile preparation and enhanced photocatalytic H2 -production activity of Cu(OH)2 cluster modified TiO2 . Energy and Environmental Science 2011; 4: 1364-1371. doi: 10.1039/C0EE00729C
  • 61. Sun L, Chen L, Xie X, Yang S, Zhao B et al. Effect of preparation method on structure characteristics and fast pyrolysis of biomass with Fe/CaO catalysts. Journal of Analytical and Applied Pyrolysis 2015; 116: 183-189. doi: 10.1016/j.jaap.2015.09.011
  • 62. Yu J, Kudo A. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized $BiVO_4$ . Advanced Functional Materials 2006; 16: 2163-2169. doi: 10.1002/adfm.200500799
  • 63. Liao DL, Liao BQ. Shape, size and photocatalytic activity control of $TiO_2$ nanoparticles with surfactants. Journal of Photochemistry and Photobiology A: Chemistry 2007; 187: 363-369. doi: 10.1016/j.jphotochem.2006.11.003
  • 64. Valente JS, Tzompantzi FPrince J, Cortez JGH, Gomez R. Adsorption and photocatalytic degradation of phenol and 2,4 dichlorophenoxiacetic acid by Mg–Zn–Al layered double hydroxides. Applied Catalysis B Environmental 2009; 90: 330-338. doi: 10.1016/j.apcatb.2009.03.019
  • 65. Neppolian B, Wang Q, Yamashita H, Choi H. Synthesis and characterization of $ZrO_2–TiO_2$ binary oxide semiconductor nanoparticles: application and interparticle electron transfer process. Applied Catalysis A General 2007; 333: 264-271. doi: 10.1016/j.apcata.2007.09.026
  • 66. Wu JC, Chung CS, Ay CL, Wang IK. Nonoxidative dehydrogenation of ethylbenzene over $TiO_2-ZrO_2$ catalysts: II. The effect of pretreatment on surface properties and catalytic activities. Journal of Catalysis 1984; 87: 98-107. doi: 10.1016/0021-9517(84)90172-6