Amino-functionalized mesostructured cellular foam silica: a highly efficient and recyclable catalyst in the Knoevenagel condensation reaction

Amino-functionalized mesostructured cellular foam silica: a highly efficient and recyclable catalyst in the Knoevenagel condensation reaction

Mesostructured cellular foam silica was functionalized by an amino group (MCF-NH2) using the postsynthesisgrafting method and utilized as a recyclable catalyst for the Knoevenagel reaction to afford α, β -unsaturated compounds. The catalyst was systematically characterized by various analyses such as nitrogen adsorption, X-ray diffraction, Fourier transform infrared spectrophotometry, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and Hammett indicator method. The results showed that MCF-NH2 catalyst was successfully prepared with a high surface area of 215 m2g−1 and a large pore volume of 1.37 cm3 g −1 . Compared with the nonfunctionalizedMCF sample, the window and cell sizes of MCF-NH2 decreased after amino group modification, whose NH2 -loading density was 1.56 mmol g −1 . The optimal condition was investigated and the highest catalytic activity was obtained in the presence of 0.1 g of MCF-NH2 catalyst under ultrasound irradiation at room temperature in the mixed solvent of ethanol and water with a volume ratio of 3:1. Various aromatic aldehydes and active methylene compounds were converted to their desired products with excellent yields within a short time. Moreover, MCF-NH2 catalyst showed high recyclability, being used four times without any significant decrease in activity.

___

  • 1. Kim, J.; Desch, R. J.; Thiel, S. W.; Guliants, V. V.; Pinto, N. G. Microporous Mesoporous Mater. 2012, 149, 60-68.
  • 2. Szymańska, K.; Bryjak, J.; Mrowiec-Białoń, J.; Jarzębski, A. B. Microporous Mesoporous Mater. 2007, 99, 167-175.
  • 3. Subagyono, D. J. N.; Marshall, M.; Knowles, G. P.; Chaffee, A. L. Microporous Mesoporous Mater. 2014, 186, 84-93.
  • 4. Xu, S.; Yong, J.; Lai, G.; Zhang, H.; Wu, Y.; Yu, A. Chem. Lett. 2013, 42, 235-237.
  • 5. Yan, X.; Zhang, L.; Zhang, Y.; Qiao, K.; Yan, Z.; Komarneni, S. Chem. Eng. J. 2011, 168, 918-924.
  • 6. Sujandi, E. A.; Park, S. E. Appl. Catal. A Gen. 2008, 350, 244-251.
  • 7. Sanz, R.; Calleja, G.; Arencibia, A.; Sanz-Pérez, E. S. Microporous Mesoporous Mater. 2012, 158, 309-317.
  • 8. Liu, Q.; Ai, H.; Li, Z. Ultrason. Sonochem. 2011, 18, 477-479.
  • 9. Yang, H.; Dong, H.; Zhang, T.; Zhang, Q.; Zhang, G.; Wang, P.; Liu, Q. Catal. Lett. 2019, 149, 778ff787.
  • 10. Liu, Q.; Ai, H. Synth. Commun. 2012, 42, 3004-3010.
  • 11. Dong, H.; Liu, Q.; Tian, Y.; Qiao, Y. J. Chem. Res. 2018, 42, 463-466.
  • 12. Liu, Q.; Ai, H.; Feng, S. Synth. Commun. 2012, 42, 122-127.
  • 13. Algoufi, Y. T.; Kabir, G.; Hameed, B. H. J. Taiwan Inst. Chem. Eng. 2017, 70, 179-187.
  • 14. Bocanegra, S. A.; Ballarini, A. D.; Scelza, O. A.; de Miguel, S. R. Mater. Chem. Phys. 2008, 111, 534-541.
  • 15. Schmidt-Winkel, P.; Lukens, W. W.; Yang, P.; Margolese, D. I.; Lettow, J. S.; Ying, J. Y.; Stucky, G. D. Chem. Mater. 2000, 12, 686-696.
  • 16. Heidari, A.; Younesi, H.; Mehraban, Z. Chem. Eng. J. 2009, 153, 70-79.
  • 17. Fellenz, N.; Perez-Alonso, F. J.; Martin, P. P.; García-Fierro, J. L.; Bengoa, J. F.; Marchetti, S. G.; Rojas, S. Microporous Mesoporous Mater. 2017, 239, 138-146.
  • 18. Saravanamurugan, S.; Sujandi; Han, D. S.; Koo, J. B.; Park, S. E. Catal. Commun. 2008, 9, 158-163.
  • 19. Ilgen, O. Fuel Process. Technol. 2011, 92, 452-455.
  • 20. Shuai, L.; Luterbacher, J. ChemSusChem 2016, 9, 133-155.
  • 21. Wang, X. S.; Zeng, Z. S.; Li, Y. L.; Shi, D. Q.; Tu, S. J.; Wei, X. Y.; Zong, Z. M. Synth. Commun. 2005, 35, 1915-1920.
  • 22. Rong, L.; Li, X.; Wang, H.; Shi, D.; Tu, S.; Zhuang, Q. Synth. Commun. 2006, 36, 2407-2412.