Targeting human telomeric DNA with azacyanines

Targeting human telomeric DNA with azacyanines

Small molecules targeting telomeric DNA or its interactions with telomerase have been an active area of cancerresearch. In the present study, we investigated the interactions of six benzimidazole compounds, called azacyanines, differing from each other in alkyl chain length and branching in the benzimidazole ring (azamethyl, azaethyl, azapropyl, azaisopropyl, azabutyl, and azaisobutyl) with human telomeric DNA (tel24) in 1:1 and 1:6 ratio (tel24:azacyanine) using UV-Vis, circular dichroism (CD), and fluorescence spectroscopy. All the compounds were binding to tel24 as indicated by the formation of the weak induced CD band between 320 nm and 360 nm. A substantial red shift and hypochromic effect were observed in the UV-Vis spectrum of azamethyl or azabutyl upon binding to tel24. No red shift or hypochromic effect was observed in the spectrum of azaisopropyl. The denaturation temperature (Tm) of tel24 increased the most, from 65 ◦ C to 78 ◦ C, in the presence of azabutyl in 1:6 ratio. Azaisopropyl stabilized tel24 the least under the same conditions. The highest (7.84 × 10 5 ± 3.44 × 10 4 M −1 ) and the lowest (2.04 × 10 5 ± 5.38 × 10 4 M −1 ) association constants were obtained for azabutyl and azaisopropyl, respectively, by fluorescence spectroscopy. Overall, the benzimidazole scaffold, the one-pot synthesis, and the stabilization ability of azacyanines to tel24 make them plausible drug candidate molecules in targeting G-quadruplexes.

___

  • 1. Phan AT, Mergny JL. Human telomeric DNA: G-quadruplex, I-motif and Watson-Crick double helix. Nucleic Acids Research 2002; 30 (21): 4618-4625. doi: 10.1093/nar/gkf597
  • 2. Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Research 2005; 33 (9): 2908-2916. doi: 10.1093/nar/gki609
  • 3. Chambers VS, Marsico G, Boutell JM, Di Antonio M, Smith GP et al. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nature Biotechnology 2015; 33 (8): 877-881. doi: 10.1038/nbt.3295
  • 4. Burge S, Parkinson GN, Hazel P, Todd AK. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Research 2006; 34 (19): 5402-5415. doi: 10.1093/nar/gkl655
  • 5. Yang D, Hurley LH. Structure of the biologically relevant G-quadruplex in the c-MYC promoter. Nucleosides, Nucleotides and Nucleic Acids 2006; 25 (8): 951-968. doi: 10.1081/15257770600809913
  • 6. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proceedings of the National Academy of Sciences 2002; 99 (18): 11593-11598. doi: 10.1073/pnas.182256799
  • 7. Greider CW. Telomerase activity, cell proliferation, and cancer. Proceedings of the National Academy of Sciences 1998; 95 (1): 90-92. doi: 10.10737pnas.95.1.90
  • 8. Wright WE, Shay JW. Role of telomeres and telomerase in cancer. Seminars in Cancer Biology 2011; 21 (6): 349-353. doi: 10.1016/j.semcancer.2011.10.001
  • 9. Shalaby T, Fiaschetti G, Nagasawa K, Shin-ya K, Baumgartner M et al. G-quadruplexes as potential therapeutic targets for embryonal tumors. Molecules 2013; 18 (10): 12500-12537. doi: 10.3390/molecules181012500
  • 10. Blackburn EH. Telomeres. Trends in Biochemical Sciences 1991;16(10):378-381.doi:10.1016/0968-0004(91)90155-O
  • 11. Blasco MA. Telomerase beyond telomeres. Nature Reviews Cancer 2002; 2 (8): 627-633. doi:10.1038/nrc862
  • 12. Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ. Structure of the human telomere in K+ solution: an intramolecular (3+ 1) G-quadruplex scaffold. Journal of the American Chemical Society 2006; 128 (30): 9963- 9970. doi: 10.1021/ja062791w
  • 13. Dai JX, Punchihewa C, Ambrus A, Chen D, Jones RA et al. Structure of the intramolecular human telomeric Gquadruplex in potassium solution: a novel adenine triple formation. Nucleic Acids Research 2007; 35 (7): 2440-2450. doi: 10.1093/nar/gkm009
  • 14. De Cian A, Cristofari G, Reichenbach P, De Lemos E, Monchaud D et al. Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proceedings of the National Academy of Sciences 2007; 104 (44): 17347-17352. doi: 10.1073/pnas.0707365104
  • 15. Yang D, Okamoto K. Structural insights into G-quadruplexes: towards new anticancer drugs. Future Medicinal Chemistry 2010; 2 (4): 619-646. doi: 10.4155/fmc.09.172
  • 16. Balasubramanian S, Hurley LH, Neidle S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nature Reviews Drug Discovery 2011; 10 (4): 261-275. doi: 10.1038/nrd3428
  • 17. Miller KM, Rodriguez R. G-quadruplexes: selective DNA targeting for cancer therapeutics? Expert Review of Clinical Pharmacology 2011; 4 (2): 139-142. doi: 10.1586/ecp.11.4
  • 18. Xu H, Di Antonio M, McKinney S, Mathew V, Ho B et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumors. Nature Communications 2017; 8: 14432-14450. doi: 10.1038/ncomms14432
  • 19. Çetinkol ÖP, Engelhart AE, Nanjunda RK, Wilson WD, Hud NV. Submicromolar, selective G-quadruplex ligands from one pot: thermodynamic and structural studies of human telomeric DNA binding by azacyanines. ChemBioChem 2008; 9 (12): 1889-1892. doi: 10.1002/cbic.200800234
  • 20. Velik J, Baliharova V, Fink-Gremmels J, Bull S, Lamka J et al. Benzimidazole drugs and modulation of biotransformation enzymes. Research in Veterinary Science 2004; 79: 95-108. doi: 10.1016/j.rvsc.2003.08.005
  • 21. Khokra SL, Choudhary D. Benzimidazole an important scaffold in drug discovery. Asian Journal of Biochemical and Pharmaceutical Research 2011; 3 (1): 476-486.
  • 22. Hernández-Luis F, Hernández-Campos A, Castillo R, Navarrete-Vázquez G, Soria-Arteche O et al. Synthesis and biological activity of 2-(trifluoromethyl)-1H-benzimidazole derivatives against some protozoa and Trichinella spiralis. European Journal of Medicinal Chemistry 2010; 45 (7): 3135-3141. doi: 10.1016/j.ejmech.2010.03.050
  • 23. Tantawy A, Barghash A, Badr S, Gomaa R. Synthesis of new heterocyclic compounds containing benzimidazole moiety as inhibitors of breast cancer cell growth. Heterocyclic Communications 2013; 19 (12): 125-131. doi: 10.1515/hc-2013-0013
  • 24. Mostafa AS, Gomaa RM, Elmorsy MA. Design and synthesis of 2-phenyl benzimidazole derivatives as VEGFR-2 inhibitors with anti-breast cancer activity. Chemical Biology & Drug Design 2019; 93: 454-463. doi: 10.1111/cbdd.13433
  • 25. Maji B, Kumar K, Kaulage M, Muniyappa K, Bhattacharya S. Design and synthesis of new benzimidazole-carbazole conjugates for the stabilization of human telomeric DNA, telomerase inhibition, and their selective action on cancer cells. Journal of Medicinal Chemistry 2014; 57: 6973-6988. doi: 10.1021/jm500427n
  • 26. Shimomura I, Yokoi A, Kohama I, Kumazaki M, Tada Y et al. Drug library screen reveals benzimidazole derivatives as selective cytotoxic agents for KRAS-mutant lung cancer. Cancer Letters 2019; 451: 11-22. doi: 10.1016/j.canlet.2019.03.002
  • 27. Sur S, Tiwari V, Sinha D, Kamran MZ, Dubey KD et al. Naphthalenediimide-linked bisbenzimidazole derivatives as telomeric G-quadruplex-stabilizing ligands with improved anticancer activity. Omega 2017; 2: 966-980. doi: 10.1021/acsomega.6b00523
  • 28. Maji B, Kumar K, Muniyappa K, Bhattacharya S. New dimeric carbazole-benzimidazole mixed ligands for the stabilization of human telomeric G-quadruplex DNA and as telomerase inhibitors. A remarkable influence of the spacer. Organic & Biomolecular Chemistry 2015; 13: 8335-8348. doi: 10.1039/c5ob00675a
  • 29. Kaulage MH, Maji B, Pasadi S, Ali A, Bhattacharya S et al. Targeting G-quadruplex DNA structures in the telomere and oncogene promoter regions by benzimidazole-carbazole ligands. European Journal of Medicinal Chemistry 2018; 148: 178-194. doi: 10.1016/j.ejmech.2018.01.091
  • 30. Yadav K, Meka PNR, Sadhu S, Guggilapu SD, Kovvuri J et al. Telomerase inhibition and human telomeric Gquadruplex DNA stabilization by a β -carboline-benzimidazole derivative at low concentrations. Biochemistry 2017; 56: 4392-4404. doi: 10.1021/acs.biochem.7b00008
  • 31. Pradeep TP, Barthwal R. A 4:1 stoichiometric binding and stabilization of mitoxantrone-parallel stranded Gquadruplex complex established by spectroscopy techniques. Journal of Photochemistry & Photobiology, B: Biology 2016; 162: 106-114. doi: 10.1016/j.jphotobiol.2016.06.019
  • 32. Tariq Z, Barthwal R. Binding of anticancer drug daunomycin to parallel G-quadruplex DNA [d-(TTGGGT)] 4 leads to thermal stabilization: a multispectroscopic investigation. International Journal of Biological Macromolecules 2018; 120: 1965-1974. doi: 10.1016/j.ijbiomac.2018.09.154.
  • 33. Das RN, Chevret E, Desplat V, Rubio S, Mergny JL et al. Design, synthesis and biological evaluation of new substituted diquinolinyl-pyridine ligands as anticancer drug agents by targeting G-quadruplex. Molecules 2017; 23 (1): 81. doi: 10.3390/molecules23010081
  • 34. Maiti S, Saha P, Das T, Bessi I, Schwalbe H et al. Human telomeric G-quadruplex selective fluoro-isoquinolines induce apoptosis in cancer cells. Bioconjugate Chemistry 2018; 29: 1141-1154. doi: 10.1021/acs.bioconjchem.7b00781
  • 35. Kumar P, Barthwal R. Structural and biophysical insight into dual site binding of the protoberberine alkoloid palmatine to parallel G-quadruplex DNA using NMR, fluorescence and circular dichroism spectroscopy. Biochimie 2018; 147: 153-169. doi: 10.1016/j.biochi.2018.02.002
  • 36. Jha NS, Mishra S, Mamidi AS, Mishra A, Jha SK et al. Targeting human telomeric G-quadruplex DNA with curcumin and its synthesized analogues under molecular crowding conditions. RSC Advances 2016; 6: 7474-7487. doi: 10.1039/c5ra17390f
  • 37. Tutuncu S, Guloglu S, Kucukakdag A, Çetinkol OP. Selective high binding affinity of azacyanines to polyd(A).polyd (T).polyd(T) triplex: the effect of chain length and branching on stabilization, selectivity and affinity. ChemistrySelect 2018; 3 (45): 12878-12887. doi: 10/1002/slct.201802802
  • 38. Bloomfield VA, Crothers DM, Tinoco I. Nucleic Acids: Structures, Properties, and Functions. Sausalito, CA, USA: University Science Books, 2000.
  • 39. Stulz E, Clever GH. DNA in Supramolecular Chemistry and Nanotechnology. Chichester, United Kingdom: Wiley & Sons Ltd, 2015.
  • 40. Wei C, Jia G, Yuan J, Feng Z, Li CA. Spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs. Biochemistry 2006; 45 (21): 6681-6691. doi:10.1021/bi052356z
  • 41. Horowitz ED, Hud NV. Ethidium and proflavine binding to a 2’,5’-linked RNA duplex. Journal of the American Chemical Society 2006; 128 (48): 15380-15381. doi: 10.1021/ja065339I
  • 42. Qu X, Chaires JB. Analysis of drug-DNA binding data. Methods in Enzymology 2000; 321: 353-369. doi: 10.1016/S0076-6879(00)21202-0
  • 43. Haddadin MJ, Kurth MJ, Olmstead MM. One-step synthesis of new heterocyclic azacyanines. Tetrahedron Letters 2000; 41 (30): 5613-5616. doi: 10.1016/S0040-4039(00)00908-4
  • 44. Huang KS, Haddadin MJ, Olmstead MM, Kurth MJ. Synthesis and reactions of some heterocyclic azacyanines. The Journal of Organic Chemistry 2001; 66 (4): 1310-1315. doi: 10.1021/jo001484k