Hydrogen storage in formic acid as a renewable energy source using heterogeneous catalysis

Hydrogen storage in formic acid as a renewable energy source using heterogeneous catalysis

One of the most vital chemicals, which is not only found naturally but can also be synthesized in thelaboratory, is formic acid (FA). FA is a key byproduct of several second-generation biorefinery processes as well, and it isused in several pharmaceutical and industrial applications. Recently, another significant use of FA that is taking the leadis as a form of fuel. This could either involve reformation, as a possible form of chemical hydrogen storage, or be donewithout reformation in the form of FA fuel cells, in particular because FA fuel cells are much more effective than otherproton-exchange membrane fuel cells. Therefore, FA is a highly useful fuel for applications such as vehicles and portabledevices. This review is based on recent developments and processes, showing that FA should become a prominentreversible source for hydrogen storage. Recent developments should permit a cheap and extremely effective source ofrechargeable hydrogen fuel cells in the future. This will be possible through the usage of appropriate heterogeneous metalnanoparticle catalysts under ideal reaction conditions. The most significant aspect will be the usage of atmospheric CO2 ,which is a greenhouse gas, to develop FA, as that would help to reduce the quantity of CO2 in the atmosphere anddiminish global warming.

___

  • 1. Singh AK, Xu Q. Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 2013; 5 (3): 652-676. doi: 10.1002/cctc.201200591
  • 2. Loges B, Boddien A, Gärtner F, Junge H, Beller M. Catalytic generation of hydrogen from formic acid and its derivatives: useful hydrogen storage materials. Topics in Catalysis 2010; 53 (13): 902-914. doi: 10.1007/s11244-010- 9522-8
  • 3. Demirci U B, Miele P. Chemical hydrogen storage: ‘material’ gravimetric capacity versus ‘system’ gravimetric capacity. Energy & Environmental Science 2011; 4 (9): 3334-3341. doi: 10.1039/C1EE01612A
  • 4. Makowski P, Thomas A, Kuhn P Goettmann F. Organic materials for hydrogen storage applications: from physisorption on organic solids to chemisorption in organic molecules. Energy & Environmental Science 2009; 2 (5): 480-490. doi: 10.1039/B822279G
  • 5. Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature 2001; 414 (6861): 353-358. doi: 10.1038/35104634
  • 6. Grasemann M, Laurenczy G. Formic acid as a hydrogen source-recent developments and future trends. Energy & Environmental Science 2012; 5 (8): 8171-8181. doi: 10.1039/C2EE21928J
  • 7. Joó F. Breakthroughs in hydrogen storage-formic acid as a sustainable storage material for hydrogen. Chemistry and Sustainability Energy and Materials 2008; 1 (10): 805-808. doi: 10.1002/cssc.200800133
  • 8. Yadav M, Xu Q. Liquid-phase chemical hydrogen storage materials. Energy & Environmental Science 2012; 5 (12): 9698-9725. doi: 10.1039/C2EE22937D
  • 9. Graetz J. New approaches to hydrogen storage. Chemical Society Reviews 2009; 38 (1): 73-82. doi: 10.1039/B718842K
  • 10. Aceves SM, Espinosa-Loza F, Ledesma-Orozco E, Ross TO, Weisberg AH et al. High-density automotive hydrogen storage with cryogenic capable pressure vessels. International Journal of Hydrogen Energy 2010; 35 (3): 1219-1226. doi: 10.1016/j.ijhydene.2009.11.069
  • 11. Sakintuna B, Yürüm Y. Templated porous carbons: a review article. Industrial & Engineering Chemistry Research 2005; 44 (9): 2893-2902. doi: 10.1021/ie049080w
  • 12. Lueking AD, Yang RT, Rodriguez NM, Baker RTK. Hydrogen storage in graphite nanofibers: effect of synthesis catalyst and pretreatment conditions. Langmuir 2004; 20 (3): 714-721. doi: 10.1021/la0349875
  • 13. Weitkamp J, Fritz M, Ernst S. Zeolites as media for hydrogen storage. International Journal of Hydrogen Energy 1995; 20 (12): 967-970. doi: 10.1016/0360-3199(95)00058-La
  • 14. Lee H, Lee J, Kim D, Park J, Seo Y et al. Tuning clathrate hydrates for hydrogen storage. Nature 2005; 434: 743-746.
  • 15. Li SL, Xu Q. Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science 2013; 6 (6): 1656-1683. doi: 10.1039/C3EE40507A
  • 16. Suh MP, Park HJ, Prasad TK, Lim DW. Hydrogen storage in metal–organic frameworks. Chemical Reviews 2011; 112 (2): 782-835. doi: 10.1021/cr200274s
  • 17. Dinca M, Long JR. Strong H2 binding and selective gas adsorption within the microporous coordination solid Mg 3 (O2 C-C10 H6 -CO2)3 . Journal of the American Chemical Society 2005; 127 (26): 9376-9377. doi: 10.1021/ja0523082
  • 18. Carmo M, Fritz DL, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy 2013; 38 (12): 4901-4934. doi: 10.1016/j.ijhydene.2013.01.151
  • 19. Yasaka Y, Yoshida K, Wakai C, Matubayasi N, Nakahara M. Kinetic and equilibrium study on formic acid decomposition in relation to the water-gas-shift reaction. Journal of Physical Chemistry A 2006; 110 (38): 11082- 11090. doi: 10.1021/jp0626768
  • 20. Jessop P G, Joó F, Tai CC. Recent advances in the homogeneous hydrogenation of carbon dioxide. Coordination Chemistry Reviews 2004; 248 (21-24): 2425-2442.
  • 21. Turner J A. Sustainable hydrogen production. Science 2004; 305 (5686): 972-974. doi: 10.1016/j.ccr.2004.05.019
  • 22. Yang J, Sudik A, Wolverton C, Siegel DJ. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chemical Society Reviews 2010; 39 (2): 656-675. doi: 10.1039/b802882f
  • 23. Nielsen M, Alberico E, Baumann W, Drexler HJ, Junge H et al. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 2013; 495 (7439): 85. doi: 10.1038/nature11891
  • 24. Yu X, Pickup PG. Recent advances in direct formic acid fuel cells (DFAFC). Journal of Power Sources 2008; 182 (1): 124-132. doi: 10.1016/j.jpowsour.2008.03.075
  • 25. Boddien A, Loges BR, Gartner F, Torborg C, Fumino K et al.. Iron-catalyzed hydrogen production from formic acid. Journal of the American Chemical Society 2010; 132 (26): 8924-8934. doi: 10.1021/ja100925n
  • 26. Fujita E, Muckerman JT, Himeda Y. Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases. Biochimica et Biophysica Acta Bioenergetics 2013; 1827 (8-9): 1031-1038. doi: 10.1016/j.bbabio.2012.11.004
  • 27. Singh AK, Singh S, Kumar A. Hydrogen energy future with formic acid: a renewable chemical hydrogen storage system. Catalysis Science & Technology 2016, 6 (1): 12-40. doi: 10.1039/C5CY01276G
  • 28. Hirota K, Kuwata K, Nakai Y. Infrared Studies of formic acid, chemisorbed on copper, nickel and zinc. Bulletin of the Chemical Society of Japan 1958; 31 (7): 861-864. doi: 10.1246/bcsj.31.861
  • 29. Peng X, Barteau M. Dehydration of carboxylic acids on the MgO (100) surface. Catalysis Letters 1990; 7 (5-6): 395-402. doi: 10.1007/BF00764930
  • 30. Dilara P, Vohs J. TPD and HREELS investigation of the reaction of formic acid on zirconium dioxide (100). Journal of Physical Chemistry 1993; 97 (49): 12919-12923. doi: 10.1021/j100151a046
  • 31. Stubenrauch J, Brosha E, Vohs J. Reaction of carboxylic acids on CeO2 (111) and CeO2 (100). Catalysis Today 1996; 28 (4): 431-441. doi: 10.1016/S0920-5861(96)00251-9
  • 32. Shido T, Iwasawa Y. Reactant promoted reaction mechanism for water-gas shift reaction on Rh-doped CeO2 . Journal of Catalysis 1993; 141 (1): 71-81. doi: 10.1006/jcat.1993.1119
  • 33. Zhou X, Huang Y, Xing W, Liu C, Liao J et al. High-quality hydrogen from the catalyzed decomposition of formic acid by Pd–Au/C and Pd–Ag/C. Chemical Communications 2008; (30): 3540-3542. doi: 10.1039/B803661F
  • 34. Tedsree K, Li T, Jones S, Chan CWA, Yu KMK et al. Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core–shell nanocatalyst. Nature Nanotechnology 2011; 6 (5): 302. doi: 10.1038/nnano.2011.42
  • 35. Tedsree K, Chan CWA, Jones S, Cuan Q, Li WK et al. guides rational design of nanocatalysts via chemisorption evaluation in liquid phase. Science 2011; 332 (6026): 224-228.
  • 36. Wang ZL, Yan JM, Wang HL, Ping Y, Jiang Q. Pd/C synthesized with citric acid: an efficient catalyst for hydrogen generation from formic acid/sodium formate. Scientific Reports 2012; 2: 598. doi: 10.1038/srep00598
  • 37. Wang ZL, Yan JM, Wang HL, Ping Y, Jiang Q. Au@Pd core-shell nanoclusters growing on nitrogen-doped mildly reduced graphene oxide with enhanced catalytic performance for hydrogen generation from formic acid. Journal of Materials Chemistry A 2013; 1 (41): 12721-12725. doi: 10.1039/C3TA12531A
  • 38. Wang ZL, Ping Y, Yan JM, Wang HL, Jiang Q. Hydrogen generation from formic acid decomposition at room temperature using a NiAuPd alloy nanocatalyst. international journal of hydrogen energy 2014; 39 (10): 4850-4856. doi: 10.1016/j.ijhydene.2013.12.148
  • 39. Cai YY, Li XH, Zhang YN, Wei X, Wang KX et al. Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott Schottky photocatalyst. Angewandte Chemie International Edition 2013; 52 (45): 11822-11825.
  • 40. Zhu QL, Tsumori N, Xu Q. Sodium hydroxide-assisted growth of uniform Pd nanoparticles on nanoporous carbon MSC-30 for efficient and complete dehydrogenation of formic acid under ambient conditions. Chemical Science 2014; 5 (1): 195-199. doi: 10.1039/C3SC52448E
  • 41. Gu X, Lu ZH, Jiang HL, Akita T, Xu Q. Synergistic catalysis of metal-organic framework-immobilized Au–Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. Journal of the American Chemical Society 2011; 133 (31): 11822-11825. doi: 10.1021/ja200122f
  • 42. Dai H, Cao N, Yang L, Su J, Luo W et al. Ag:Pd nanoparticles supported on MIL-101 as high performance catalysts for catalytic dehydrogenation of formic acid. Journal of Materials Chemistry A 2014; 2 (29): 11060-11064. doi: 10.1039/C4TA02066A
  • 43. Wang ZL, Wang HL, Yan JM, Ping Y, O SI et al. DNA-directed growth of ultrafine CoAuPd nanoparticles on graphene as efficient catalysts for formic acid dehydrogenation. Chemical Communications 2014; 50 (21): 2732-2734. doi: 10.1039/C3CC49821B
  • 44. Mori K, Dojo M, Yamashita H. Pd and Pd-Ag nanoparticles within a macroreticular basic resin: an efficient catalyst for hydrogen production from formic acid decomposition. ACS Catalysis 2013, 3 (6): 1114-1119. doi: 10.1021/cs400148n
  • 45. Martis M, Mori K, Fujiwara K, Ahn WS, Yamashita H. Amine-functionalized MIL-125 with imbedded palladium nanoparticles as an efficient catalyst for dehydrogenation of formic acid at ambient temperature. Journal of Physical Chemistry C 2013; 117 (44): 22805-22810. doi: 10.1021/jp4069027
  • 46. Yurderi M, Bulut A, Zahmakiran M, Kaya M. Carbon supported trimetallic PdNiAg nanoparticles as highly active, selective and reusable catalyst in the formic acid decomposition. Applied Catalysis B Environmental, 2014; 160-161: 514-524. doi: 10.1016/j.apcatb.2014.06.004
  • 47. Qin YL, Wang J, Meng FZ, Wang LM, Zhang XB. Efficient PdNi and PdNi@ Pd-catalyzed hydrogen generation via formic acid decomposition at room temperature. Chemical Communications 2013; 49 (85): 10028-10030. doi: 10.1039/C3CC46248J
  • 48. Ojeda M, Iglesia E. Formic acid dehydrogenation on Au-based catalysts at near-ambient temperatures. Angewandte Chemie International Edition 2009; 121 (26): 4894-4897. doi: 10.1002/anie.200805723
  • 49. Yadav M, Akita T, Tsumori N, Xu Q. Strong metal-molecular support interaction (SMMSI): amine-functionalized gold nanoparticles encapsulated in silica nanospheres highly active for catalytic decomposition of formic acid. Journal of Materials Chemistry 2012; 22 (25): 12582-12586. doi: 10.1039/C2JM31309J
  • 50. Bi QY, Du XL, Liu YM, Cao Y, He HY et al. Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions. Journal of the American Chemical Society 2012; 134 (21): 8926-8933. doi: 10.1021/ja301696e
  • 51. Jiang K, Xu K, Zou S, Cai WB. B-Doped Pd catalyst: boosting room-temperature hydrogen production from formic acid–formate solutions. Journal of the American Chemical Society 2014; 136 (13): 4861-4864. doi: 10.1021/ja5008917
  • 52. Bielinski EA, Lagaditis PO, Zhang Y, Mercado BQ, Wurtele C et al. Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst. Journal of the American Chemical Society 2014; 136 (29): 10234-10237. doi: 10.1021/ja505241x
  • 53. Dai H, Xia B, Wen L, Du C, Su J et al. Synergistic catalysis of AgPd@ZIF-8 on dehydrogenation of formic acid. Applied Catalysis B Environmental 2015; 165: 57-62. doi: 10.1016/j.apcatb.2014.09.065
  • 54. Jia L, Bulushev DA, Podyacheva OY, Boronin AI, Kibis LS et al. Pt nanoclusters stabilized by N-doped carbon nanofibers for hydrogen production from formic acid. Journal of Catalysis 2013; 307: 94-102. doi: 10.1016/j.jcat. 2013.07.008
  • 55. Wang X, Qi GW, Tan CH, Li YP, Guo J et al. Pd/C nanocatalyst with high turnover frequency for hydrogen generation from the formic acid-formate mixtures. International Journal of Hydrogen Energy 2014; 39 (2): 837-843. doi: 10.1016/j.ijhydene.2013.10.154
  • 56. Ting SW, Cheng S, Tsang KY, van der Laak N, Chan KY. Low activation energy dehydrogenation of aqueous formic acid on platinum-ruthenium-bismuth oxide at near ambient temperature and pressure. Chemical Communications 2009; 47: 7333-7335.
  • 57. Sanchez F, Motta D, Bocelli L, Albonetti S, Roldan A et al. Investigation of the catalytic performance of Pd/CNFs for hydrogen evolution from additive-free formic acid. Journal of Carbon Research 2018; 4 (2): 26. doi: 10.3390/c4020026
  • 58. Hu C, Pulleri JK, Ting SW, Chan KY. Activity of Pd/C for hydrogen generation in aqueous formic acid solution. International Journal of Hydrogen Energy 2014; 39: 381-390. doi: 10.1016/j.ijhydene.2013.10.067
  • 59. Metin O, Sun X, Sun S. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Nanoscale 2013; 5: 910-912. doi: 10.1039/C2NR33637E
  • 60. Sen Z, Önder M, Dong S, Shouheng S. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid. Angewandte Chemie International Edition 2013; 52: 3681-3684. doi: 10.1002/anie.201300276
  • 61. Bulut A, Yurderi M, Karatas Y, Zahmakiran M, Kivrak H et al. Pd-MnOx nanoparticles dispersed on amine-grafted silica: highly efficient nanocatalyst for hydrogen production from additive-free dehydrogenation of formic acid under mild conditions. Applied Catalysis B Environmental 2015; 164: 324-333. doi: 10.1016/j.apcatb.2014.09.041
  • 62. Ho SF, Mendoza-Garcia A, Guo S, He K, Su D et al. Facile route to monodisperse MPd (M = Co or Cu) alloy nanoparticles and their catalysis for electrooxidation of formic acid. Nanoscale 2014; 6: 6970-6973. doi: 10.1039/C4NR01107D
  • 63. Akbayrak S, Tonbul Y, Özkar S. Nanoceria supported palladium(0) nanoparticles: superb catalyst indehydrogenation of formic acid at room temperature. Applied Catalysis B Environmental 2017; 206: 384-392. doi: 10.1016/j.apcatb.2017.01.063
  • 64. Akbayrak S, Decomposition of formic acid using tungsten (VI) oxide supported Ag:Pd nanoparticles, Journal of Colloid and Interface Science 2019; 538: 682-688. doi: 10.1016/j.jcis.2018.12.074