Synthesis of SMZ derivatives and investigation of effects on germination, root, and plant growth of Arabidopsis thaliana L.

Synthesis of SMZ derivatives and investigation of effects on germination, root, and plant growth of Arabidopsis thaliana L.

A series of sulfonamide derivatives were synthesized by reactions with various functional groups containingbenzenesulfonyl chlorides and aniline derivatives under different substitution reaction conditions. The structures of SMZ derivatives were confirmed with melting point, FT-IR, 1 H NMR, 13 C NMR, and LC-MS/MS techniques. In order to investigate the cytotoxic effects of these derivatives, we used a model plant species. The synthesized compounds (S1–S5) and sulfamethazine (SMZ) as a positive control were applied to Arabidopsis thaliana seeds. Our results indicated that S3 and S4 induced shorter roots and lower wet weight in plants. Plants treated with S2 and S5 showed no growth effects, similar to the untreated control group, while S1 slightly reduced root length and wet weight. These results suggest that S3 and the newly synthesized S4 derivatives have potential for use as herbicides since they possess cytotoxic effects on A. thaliana plants.

___

  • 1. Supuran CT. Drug interaction considerations in the therapeutic use of carbonic anhydrase inhibitors. Expert Opinion on Drug Metabolism & Toxicology 2016; 12 (4): 423-431. doi: 10.1517/17425255.2016.1154534
  • 2. Ammazzalorso A, Filippis B, Giampietro L, Amoroso R. N -acylsulfonamides: Synthetic routes and biological potential in medicinal chemistry. Chemical Biology & Drug Design 2017; 90 (6): 1094-1105. doi: 10.1111/cbdd.13043
  • 3. Han T, Goralski M, Gaskill N, Capota E, Kim J et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 2017; 356 (6336): 397. doi: 10.1126/science.aal3755
  • 4. Vermelho AB, Capaci GR, Rodrigues IA, Cardoso VS, Mazotto AM et al. Carbonic anhydrases from Trypanosoma and Leishmania as anti-protozoan drug targets. Bioorganic & Medicinal Chemistry 2017; 25 (5): 1543-1555. doi: 10.1016/j.bmc.2017.01.034
  • 5. Adhikari N, Mukherjee A, Saha A, Jha T. Arylsulfonamides and selectivity of matrix metalloproteinase-2: an overview. European Journal of Medicinal Chemistry 2017; 129: 72-109. doi: 10.1016/j.ejmech.2017.02.014
  • 6. Tasho RP, Cho JY. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: a review. Science of the Total Environment 2016; 563-564: 366-376. doi: 10.1016/j.scitotenv.2016.04.140
  • 7. Du L, Liu W. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agronomy for Sustainable Development 2012; 32: 309-327. doi: 10.1007/s13593-011-0062-9
  • 8. Zhang H, Deng X, Miki D, Cutler S, La H et al. Sulfamethazine suppresses epigenetic silencing in Arabidopsis by impairing folate synthesis. Plant Cell 2012; 24 (3): 1230-1241. doi: 10.1105/tpc.112.096149
  • 9. Loenen WA. S-adenosylmethionine: jack of all trades and master of everything? Biochemical Society Transactions 2006; 34 (2): 330-333. doi: 10.1042/BST0340330
  • 10. Bird AP. Use of restriction enzymes to study eukaryotic DNA methylation: II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. Journal of Molecular Biology 1978; 118 (1): 49-60. doi: 10.1016/0022-2836(78)90243-7
  • 11. Dennis ES, Finnegan EJ, Bilodeau P, Chaudhury A, Genger R et al. Vernalization and the initiation of flowering. Seminars in Cell and Developmental Biology 1996; 7: 441-448. doi: 10.1006/scdb.1996.0055
  • 12. Xiao W, Custard KD, Brown RC, Lemmon BE, Harada JJ et al. DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell Online 2006; 18: 805-814. doi: 10.1105/tpc.105.038836
  • 13. Finnegan EJ, Peacock WJ, Dennis ES. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proceedings of the National Academy of Sciences of the USA 1996; 93 (16): 8449-8454. doi: 10.1073/pnas.93.16.8449
  • 14. Kakutani T, Jeddeloz JA, Richards EJ. Characterization of an Arabidopsis thaliana DNA hypomethylation mutant. Nucleic Acids Research 1995; 23 (1): 130-137. doi: 10.1093/nar/23.1.130
  • 15. Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL. Demethylation-induced developmental pleiotropy in Arabidopsis. Science 1996; 273 (5275): 654-657. doi: 10.1126/science.273.5275.654
  • 16. Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M. Arabidopsis thaliana: a model plant for genome analysis. Science 1998; 282 (5389): 662-682. doi: 10.1126/science.282.5389.662
  • 17. Purushottamachar P, Aakanksha K, Tadas S, Robert DB, Lalji KG et al. Potent anti-prostate cancer agents derived from a novel androgen receptor down-regulating agent. Bioorganic & Medicinal Chemistry 2008; 16: 3519-3529. doi: 10.1016/j.bmc.2008.02.031
  • 18. Shimotori H, Yanagida H, Enomoto Y, Igarashi K, Yoshinari M et al. Evaluation of benzenesulfonanilide derivatives for the control of crucifers clubroot. Journal of Pesticide Science 1996; 21: 31-35. doi: 10.1584/jpestics.21.31
  • 19. Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR. Vogel’s Textbook of Practical Organic Chemistry. 4th ed. London, UK: Longman, 1978.
  • 20. George TG, Johnsamuel J, Delfín DA, Yakovich A, Mukherjee M et al. Antikinetoplastid antimitotic activity and metabolic stability of dinitroaniline sulfonamides and benzamides. Bioorganic & Medicinal Chemistry 2006; 14 (16): 5699-5710. doi: 10.1016/j.bmc.2006.04.017
  • 21. Sternesjo A, Mellgren C, Bjorck L. Determination of sulfamethazine residues in milk by a surface plasmon resonance-based biosensor assay. Analytical Biochemistry 1995; 226 (1): 175-181. doi: 10.1006/abio.1995.1206
  • 22. Aust MO, Godlinski F, Travis GR, Hao X, McAllister TA et al. Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environmental Pollution 2008; 156 (3): 1243-1251. doi: 10.1016/j.envpol.2008.03.011
  • 23. Dixon-Holland DE, Katz SE. Competitive direct enzyme-linked immunosorbent assay for detection of sulfamethazine residues in swine urine and muscle tissue. Journal of the Association of Official Analytical Chemists 1988; 71: 1137-1140.
  • 24. Bevill RF, Sharma RM, Meachum SH, Wozniak SC, Bourne DW et al. Disposition of sulfonamides in foodproducing animals: concentrations of sulfamethazine and its metabolites in plasma, urine, and tissues of lambs following intravenous administration. American Journal of Veterinary Research 1977; 38 (7): 973-977.
  • 25. Fleeker JR, Lovett LJ. Enzyme Immunoassay for screening sulfamethazine residues in swine blood. Journal of the Association of Official Analytical Chemists 1985; 68: 172-174.
  • 26. Zayas-Blanco F, Garcıffa-Falcón MS, Simal-Gándara J. Determination of sulfa methazine in milk by solid phase extraction and liquid chromatographic separation with ultraviolet detection. Food Control 2004; 15: 375-378. doi:10.1016/S0956-7135(03)00100-2
  • 27. Dolliver H, Kumar K, Gupta S. Sulfamethazine uptake by plants from manure-amended soil. Journal of Environmental Quality 2007; 36 (4): 1224-1230. doi: 10.2134/jeq2006.0266
  • 28. Rajapaksha AU, Chen SS, Tsang DCW, Zhang M, Vithanage M et al. Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 2016; 148: 276-291. doi: 10.1016/j.chemosphere.2016.01.043
  • 29. Topp E, Chapman R, Devers-Lamrani M, Hartmann A, Marti R et al. Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfamethazine-degrading sp. Journal of Environmental Quality 2013; 42 (1): 173-178. doi:10.2134/jeq2012.0162
  • 30. Jammi S, Sakthivel S, Rout L, Mukherjee T, Mandal S et al. CuO nanoparticles catalyzed C-N, C-O, and CS cross-coupling reactions: scope and mechanism. Journal of Organic Chemistry 2009; 74 (5): 1971-1976. doi: 10.1021/jo8024253
  • 31. Bunce RA, Smith CL, Knight CL. N -(Nitrophenyl) benzamide and benzenesulfonamide derivatives by nucleophilic aromatic substitution. Organic Preparations and Procedures International 2004; 36 (10): 482-487. doi: 10.1080/00304940409356635
  • 32. Sato K, Takahagi H, Yoshikawa T, Morimoto S, Takai T et al. Discovery of a novel series of N -Phenylindoline-5- sulfonamide derivatives as potent, selective, and orally bioavailable acyl CoA:monoacylglycerol acyltransferase-2 inhibitors. Journal of Medicinal Chemistry 2015; 58 (9): 3892-3909. doi: 10.1021/acs.jmedchem.5b00178