Acetyl- and butyrylcholinesterase inhibitory activity of selected photochemically synthesized polycycles

Acetyl- and butyrylcholinesterase inhibitory activity of selected photochemically synthesized polycycles

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the main cause of dementiain the elderly population. Since the treatment of AD has been associated with the activity of acetylcholinesterase(AChE) and butyrylcholinesterase (BChE), their inhibitors remain the main focus of AD investigations. In this study we evaluated cholinesterase inhibitory activity of 14 bicyclo[3.2.1]octene/octadiene derivatives and naturally occurring sesquiterpene alcohol cedrol. These 14 compounds have been efficiently and ecologically prepared by a photochemical approach in batch photochemical reactors. Various compounds with the bicyclo[3.2.1]octene skeleton have already been successfully evaluated for treatment of central nervous system disorders and AD. Among the tested polycyclic derivatives, compounds 4-[(9S)-tricyclo[6.3.1.0 2,7 ]dodeca-2,4,6,10-tetraen-9-yl]pyridine (3) and (11S)-11-(4-chlorophenyl)-12-[(E)- 2-(4 chlorophenyl)ethenyl]tricyclo[6.3.1.0 2,7 ]dodeca-2,4,6,9-tetraene (6) showed the best inhibitory activity on BChE (IC50 = 8.8 µM) and AChE (IC50 = 17.5 µM), respectively.

___

  • 1. Kukull WA, Higdon R, Bowen JD, McCormick WC, Teri L et al. Dementia and Alzheimer disease incidence: a prospective cohort study. Archives of Neurology 2002; 59 (11): 1737-1746. doi: 10.1001/archneur.59.11.1737
  • 2. Tarawneh R. Holtzman DM. The clinical problem of symptomatic alzheimer disease and mild cognitive impairment. Cold Spring Harbor Perspectives in Medicine 2012; 2 (5): 1-16. doi: 10.1101/cshperspect.a006148
  • 3. Khan MTH. Molecular interactions of cholinesterases inhibitors using in silico methods: current status and future prospects. New Biotechnology 2009; 25 (5): 331-346. doi: https://doi.org/10.1016/j.nbt.2009.03.008
  • 4. Masson P, Carletti E, Nachon F. Structure, activities and biomedical applications of human butyrylcholinesterase. Protein and Peptide Letters 2009; 16 (10): 1215-1224. doi: http://dx.doi.org/10.2174/092986609789071207
  • 5. Öztaskın N, Taslimi P, Maraş A, Gülcin İ. Göksu S. Novel antioxidant bromophenols with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. Bioorganic Chemistry 2017; 74: 104-114. doi: https://doi.org/10.1016/j.bioorg.2017.07.010
  • 6. Akıncıoğlu A, Kocaman E, Akıncıoğlu H, Salmas RE, Durdagi S et al. The synthesis of novel sulfamides derived from β -benzylphenethylamines as acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase enzymes inhibitors. Bioorganic Chemistry 2017; 74: 238-250. doi: https://doi.org/10.1016/j.bioorg.2017.08.012
  • 7. Burčul F, Radan M, Politeo O. Blažević I. Cholinesterase-inhibitory activity of essential oils. In: Taylor JC (editor). Advances in Chemistry Research. New York, NY, USA: Nova Science Publishers Inc., 2017, pp. 1-71.
  • 8. Gulçin İ, Abbasova M, Taslimi P, Huyut Z, Safarova L et al. Synthesis and biological evaluation of aminomethyl and alkoxymethyl derivatives as carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 2017; 32 (1): 1174-1182. doi: 10.1080/14756366.2017.1368019
  • 9. Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β -amyloid peptide in rodent. Proceedings of the National Academy of Sciences of the United States of America 2005; 102 (47): 17213-17218. doi: 10.1073/pnas.0508575102
  • 10. Giacobini E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacological Research 2004; 50 (4): 433-440. doi: https://doi.org/10.1016/j.phrs.2003.11.017
  • 11. Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps JC, Nachon F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. Journal of Biological Chemistry 2003; 278 (42): 41141-41147. doi: 10.1074/jbc.M210241200
  • 12. Dvir H, Silman I, Harel M, Rosenberry TL. Sussman JL. Acetylcholinesterase: from 3D structure to function. Chemico-Biological Interactions 2010; 187 (1): 10-22. doi: https://doi.org/10.1016/j.cbi.2010.01.042
  • 13. Abad A, Agulló C, Cuñat A, De Alfonso I, Navarro I et al. Synthesis of highly functionalised enantiopure bicyclo[3.2.1]-octane systems from carvone. Molecules 2004; 9 (5): 287-299.
  • 14. Miller JA, Harris J, Miller AA, Ullah GM, Welsh GM. Synthesis of 8-substituted bicyclo[3.2.1]octane-6-carboxylic acids and anti-convulsant properties of the corresponding amides. Tetrahedron Letters 2004; 45 (22): 4323-4327. doi: https://doi.org/10.1016/j.tetlet.2004.04.007
  • 15. Thomson CG, Carlson E, Chicchi GG, Kulagowski JJ, Kurtz MM et al. Synthesis and structure–activity relationships of 8-azabicyclo[3.2.1]octane benzylamine NK1 antagonists. Bioorganic & Medicinal Chemistry Letters 2006; 16 (4): 811-814. doi: https://doi.org/10.1016/j.bmcl.2005.11.026
  • 16. Mascitti V. Préville C. Stereoselective synthesis of a dioxa-bicyclo[3.2.1]octane SGLT2 inhibitor. Organic Letters 2010; 12 (13): 2940-2943. doi: 10.1021/ol100940w
  • 17. Kavitha CV, Nambiar M, Narayanaswamy PB, Thomas E, Rathore U et al. Propyl-2-(8-(3,4-difluorobenzyl)-2′ ,5′-dioxo-8-azaspiro[bicyclo[3.2.1] octane-3,4′ -imidazolidine]-1′ -yl) acetate induces apoptosis in human leukemia cellsthrough mitochondrial pathway following cell cycle arrest. PLoS One 2013; 8 (7): e69103. doi: 10.1371/journal.pone.0069103
  • 18. Kraus GA, Hon YS, Sy J. Synthesis of bicyclo[3.2.1]octanes by ring contraction. Journal of Organic Chemistry 1986; 51 (14): 2625-2627. doi: 10.1021/jo00364a001
  • 19. Filippini MH, Rodriguez J. Synthesis of functionalized bicyclo[3.2.1]octanes and their multiple uses in organic chemistry. Chemical Reviews 1999; 99 (1): 27-76. doi: 10.1021/cr970029u
  • 20. Presset M, Coquerel Y, Rodriguez J. Syntheses and applications of functionalized bicyclo[3.2.1]octanes: thirteen years of progress. Chemical Reviews 2013; 113 (1): 525-595. doi: 10.1021/cr200364p
  • 21. Meltzer PC, Blundell P, Yong YF, Chen Z, George C et al. 2-Carbomethoxy-3-aryl-8-bicyclo[3.2.1]octanes: potent non-nitrogen inhibitors of monoamine transporters. Journal of Medicinal Chemistry 2000; 43 (16): 2982-2991. doi: 10.1021/jm000191g
  • 22. Mandzhulo AY, Mel’nichuk NA, Fetyukhin VN, Vovk MV. Synthesis of 4′ -alkyl-8-azaspiro[bicyclo[3.2.1]octane3,2′ -morpholin]-5′ -ones. Russian Journal of Organic Chemistry 2016; 52 (1): 87-91. doi: 10.1134/S1070428016010164
  • 23. Klumpp GW, Barnick JWFK, Veefkind AH, Bickelhaupt F. The synthesis of substituted bicyclo[3.2.1]octa-2,6- dienes. Recueil des Travaux Chimiques des Pays-Bas 1969; 88 (7): 766-778. doi: doi:10.1002/recl.19690880702
  • 24. Nitta M, Okada S, Kato M. Stereoelectronic and homoconjugative effect of stereoselectivity. The addition of dichlorocarbene to 1,5-dimethyl-6-methylenetricyclo[3.2.1.02,7]oct-3-en-8-one and its related compounds. Bulletin of the Chemical Society of Japan 1984; 57 (9): 2463-2467. doi: 10.1246/bcsj.57.2463
  • 25. Jones PS, Smith PW, Hardy GW, Howes PD, Upton RJ et al. Synthesis of tetrasubstituted bicyclo[3.2.1]octenes as potential inhibitors of influenza virus sialidase. Bioorganic and Medicinal Chemistry Letters 1999; 9 (4): 605-610. doi: https://doi.org/10.1016/S0960-894X(99)00032-3
  • 26. Sakata J, Ando Y, Ohmori K, Suzuki K. Synthetic study on naphthospironone A: construction of benzobicyclo[3.2.1]octene skeleton with oxaspirocycle. Organic Letters 2015; 17 (15): 3746-3749. doi: 10.1021/acs.orglett.5b01732
  • 27. Su X, Sun Y, Yao J, Chen H, Chen C. Acid-promoted bicyclization of arylacetylenes to benzobicyclo[3.2.1]octanes through cationic rearrangements. Chemical Communications 2016; 52 (24): 4537-4540. doi: 10.1039/C6CC00452K
  • 28. Šindler-Kulyk M, Špoljarić L, Marinić Ž. Photochemistry of β -(2-furyl) substituted o-divinylbenzenes. Heterocycles 1989; 29 (4): 679-682. doi: 10.3987/COM-89-4629
  • 29. Šindler-Kulyk M, Tomšić S, Marinić Ž, Metelko B. Synthesis and photochemistry of 2-styrylpyrroles. Intermolecular photoaddition of pyrroles to a double bond. Recueil des Travaux Chimiques des Pays-Bas 1995; 114 (11-12): 476- 479. doi: doi:10.1002/recl.19951141109
  • 30. Sindler-Kulyk M, Skoric I, Tomsic S, Marinic Z, Mrvos-Sermek D. Synthesis and photochemistry of styryl substituted annelated furan derivatives. Heterocycles 1999; 51 (6): 1355-1369. doi: 10.3987/COM-99-8502
  • 31. Škorić I, Basarić N, Marinić Z, Šindler-Kulyk M. Observation of the primary intermediates in the photochemistry of o-vinylstyrylfurans. Heterocycles 2001; 55 (10): 1889-1896. doi: 10.3987/COM-01-9314
  • 32. Basarić N, Marinić Ž, Šindler-Kulyk M. Photochemical formation of novel pyrrolo[3,2-b]-6,7-benzobicyclo[3.2.1]octa2,6-diene. Journal of Organic Chemistry 2003; 68 (19): 7524-7527. doi: 10.1021/jo0346454
  • 33. Škorić I, Basarić N, Marinić Ž, Višnjevac A, Kojić-Prodić B et al. Synthesis and photochemistry of β ,β ′-di(2-furyl)- substituted o-divinylbenzenes: intra- and/or intermolecular cycloaddition as an effect of annelation. Chemistry-A European Journal 2005; 11 (2): 543-551. doi: doi:10.1002/chem.200401005
  • 34. Škorić I, Flegar I, Marinić Ž, Šindler-Kulyk M. Synthesis of the novel conjugated ω,ω ′ -diaryl/heteroaryl hexatriene system with the central double bond in a heteroaromatic ring: photochemical transformations of 2,3-divinylfuran derivatives. Tetrahedron 2006; 62 (31): 7396-7407. doi: https://doi.org/10.1016/j.tet.2006.05.034
  • 35. Vidaković D, Škorić I, Horvat M, Marinić Ž, Šindler-Kulyk M. Photobehaviour of 2- and 3-heteroaryl substituted o-divinylbenzenes; formation of fused 2,3- and 3,2-heteroareno-benzobicyclo[3.2.1]octadienes and 3-heteroaryl benzobicyclo[2.1.1]hexenes. Tetrahedron 2008; 64 (18): 3928-3934. doi: https://doi.org/10.1016/j.tet.2008.02.062
  • 36. Škorić I, Šmehil M, Marinić Ž, Molčanov K, Kojić-Prodić B et al. Photochemistry of ω-(o-vinylphenyl)-ω′- (phenyl/2-furyl) butadienes: new approach to 4-substituted benzobicyclo[3.2.1]octadienes. Journal of Photochemistry and Photobiology A: Chemistry 2009; 207 (2): 190-196. doi: https://doi.org/10.1016/j.jphotochem.2009.07.008
  • 37. Kikaš I, Škorić I, Marinić Ž, Šindler-Kulyk M. Synthesis and phototransformations of novel styryl-substituted furo-benzobicyclo[3.2.1]octadiene derivatives. Tetrahedron 2010; 66 (48): 9405-9414. doi: https://doi.org/10.1016/ j.tet.2010.09.093
  • 38. Kikaš I, Horváth O, Škorić I. Functionalization of the benzobicyclo[3.2.1]octadiene skeleton via photocatalytic and thermal oxygenation of a furan derivative. Tetrahedron Letters 2011; 52 (47): 6255-6259. doi: https://doi.org/10.1016/ j.tetlet.2011.09.076
  • 39. Škorić I, Kikaš I, Kovács M, Fodor L, Marinić Ž et al. Synthesis, photochemistry, and photophysics of butadiene derivatives: influence of the methyl group on the molecular structure and photoinduced behavior. Journal of Organic Chemistry 2011; 76 (21): 8641-8657. doi: 10.1021/jo200691x
  • 40. Kikaš I, Horváth O, Škorić I. Functionalization of the benzobicyclo[3.2.1]octadiene skeleton via photocatalytic oxygenation of furan and benzofuran derivatives. Journal of Molecular Structure 2013; 1034: 62-68. doi: https://doi.org/ 10.1016/j.molstruc.2012.09.005
  • 41. Vuk D, Potroško D, Šindler-Kulyk M, Marinić Ž, Molčanov K et al. Synthesis and photochemical transformations of new butadiene chromophores: the influence of the nature and position of chlorine substituent on the photoinduced behaviour. Journal of Molecular Structure 2013; 1051: 1-14. doi: https://doi.org/10.1016/j.molstruc.2013.07.052
  • 42. Vuk D, Kikaš I, Molčanov K, Horváth O, Škorić I. Functionalization of the benzobicyclo[3.2.1]octadiene skeleton via photocatalytic oxygenation of thiophene and furan derivatives: the impact of the type and position of the heteroatom. Journal of Molecular Structure 2014; 1063: 83-91. doi: https://doi.org/10.1016/j.molstruc.2014.01.055
  • 43. Vuk D, Marinić Ž. Škorić I. Photochemical approach to new polycyclic substrates suitable for further photocatalytic functionalization. Croatica Chemica Acta 2014; 87 (4): 465-473. doi: 10.5562/cca2454
  • 44. Vuk D, Horváth O, Marinić Ž, Škorić I. Functionalization of the benzobicyclo[3.2.1] octadiene skeleton possessing one isolated double bond via photocatalytic oxygenation. Journal of Molecular Structure 2016; 1107: 70-76. doi: https://doi.org/10.1016/j.molstruc.2015.11.036
  • 45. Šagud I, Levačić M, Marinić Ž, Škorić I. Formation of polycyclic skeletons by photochemical transformations of pyridyl- and thienylbutadiene derivatives. European Journal of Organic Chemistry 2017; 2017 (26): 3787-3794. doi: doi:10.1002/ejoc.201700481
  • 46. Miyazawa M, Yamafuji C. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. Journal of Agricultural and Food Chemistry 2005; 53 (5): 1765-1768. doi: 10.1021/jf040019b
  • 47. Greenblatt HM, Kryger G, Lewis T, Silman I, Sussman JL. Structure of acetylcholinesterase complexed with (–)- galanthamine at 2.3 Å resolution. FEBS Letters 1999; 463 (3): 321-326. doi: doi:10.1016/S0014-5793(99)01637-3
  • 48. Bai D. Development of huperzine A and B for treatment of Alzheimer’s disease. Pure and Applied Chemistry 2007; 79 (4): 469-479. doi: 10.1351/pac200779040469
  • 49. Haigh JR, Johnston SR, Peppernay A, Mattern PJ, Garcia GE et al. Protection of red blood cell acetylcholinesterase by oral huperzine A against ex vivo soman exposure: next generation prophylaxis and sequestering of acetylcholinesterase over butyrylcholinesterase. Chemico-Biological Interactions 2008; 175 (1): 380-386. doi: https://doi.org/10.1016/j.cbi.2008.04.033
  • 50. Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacology and Therapeutics 2015; 148: 34-46. doi: https://doi.org/10.1016/ j.pharmthera.2014.11.011
  • 51. Tang XC, Han YF. Pharmacological profile of huperzine A, a novel acetylcholinesterase inhibitor from Chinese herb. CNS Drug Reviews 1999; 5 (3): 281-300. doi: 10.1111/j.1527-3458.1999.tb00105.x
  • 52. Wang R, Yan H, Tang XC. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacologica Sinica 2006; 27: 1-26. doi: 10.1111/j.1745-7254.2006.00255.x
  • 53. Testa B, Crivori P, Reist M, Carrupt PA. The influence of lipophilicity on the pharmacokinetic behavior of drugs: concepts and examples. Perspectives in Drug Discovery and Design 2000; 19 (1): 179-211. doi: 10.1023/a:1008741731244
  • 54. Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx 2005; 2 (4): 554-571. doi: 10.1602/neurorx.2.4.554
  • 55. Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005; 2 (4): 541-553. doi: 10.1602/neurorx.2.4.541
  • 56. Gurjar AS, Darekar MN, Yeong KY, Ooi L. In silico studies, synthesis and pharmacological evaluation to explore multi-targeted approach for imidazole analogues as potential cholinesterase inhibitors with neuroprotective role for Alzheimer’s disease. Bioorganic & Medicinal Chemistry 2018; 26 (8): 1511-1522. doi: https://doi.org/10.1016/j.bmc. 2018.01.029
  • 57. Burčul F, Generalić Mekinić I, Radan M, Rollin P, Blažević I. Isothiocyanates: cholinesterase inhibiting, antioxidant, and anti-inflammatory activity. Journal of Enzyme Inhibition and Medicinal Chemistry 2018; 33 (1): 577-582. doi: 10.1080/14756366.2018.1442832
  • 58. Cheung J, Gary EN, Shiomi K, Rosenberry TL. Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. ACS Medicinal Chemistry Letters 2013; 4 (11): 1091-1096. doi: 10.1021/ml400304w