Detection of lard contamination in five different edible oils by FT-IR spectroscopy using a partial least squares calibration model

Detection of lard contamination in five different edible oils by FT-IR spectroscopy using a partial least squares calibration model

Lard is defined as animal fat acquired from the adipose tissue of pigs and is not permitted for humanconsumption or external use by certain religions such as Islam and Judaism. Due to its low-cost availability for commercial use, it is often mixed with other vegetable oils mistakenly or deliberately and causes loss of consumer trust; hence, its detection in food products is essential. Consumers tend to know the authenticity of commercially available edible oils. However, edible oils are subjected to adulteration risks with lard, which breaches consumer rights. In the present study, we designed a transmission Fourier transform infrared spectroscopy (FT-IR)-based method for the rapid detection of lard in sunflower, canola, coconut, olive, and mustard oils. For this purpose, the selected oils were adulterated with lard in different concentration ratios (10:0, 9:1, 7:3, 6:4, 4:6, 3:7, 0:10). A single calibration model was developed for 35 standards (seven standards from each individual five oils) in the frequency range between 1078.01 and 1246.75 cm −1 to determine the relationship between actual adulterant concentration and FT-IR predicted concentrations using a partial least squares (PLS) method. The results of the present study indicated that FT-IR in combination with PLS has the potential to evaluate adulteration of edible oils with lard through single calibration as a rapid, nondestructive, and effective alternative method.

___

  • 1. Osorio M, Haughey S, Elliott C, Koidis A. Evaluation of methodologies to determine vegetable oil species present in oil mixtures: proposition of an approach to meet the EU legislation demands for correct vegetable oils labeling. Food Research International 2014; 60: 66-75. doi: 10.1016/j.foodres.2013.12.013
  • 2. Seedi E, Said E, Khalifa S, Göransson U, Boglin L et al. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. Journal of Agriculture and Food Chemistry 2012; 60 (44): 10877-10895. doi:10.1021/JF301807g
  • 3. Marikkar M, Mirghani M, Jaswir I. Application of chromatographic and infrared spectroscopic techniques for detection of adulteration in food lipids: a review. Journal of Food Chemistry and Nanotechnology 2016; 2: 3241. doi: 10.1080/10942912.2010.498544
  • 4. Dahimi O, Hassan M, Rahim A, Abdulkarim S. Differentiation of lard from other edible fats by gas chromatography flame ionisation detector (GC FID) and chemometrics. Journal of Food and Pharmaceutical Sciences 2014; 2: 27-31. doi:10.14499/jfps
  • 5. Kurniawati E, Rohman A, Triyana K. Analysis of lard in meatball broth using Fourier transform infrared spectroscopy and chemometrics. Meat Science 2014; 96: 9498. doi: 10.1016/j.meatsci.2013.07.003
  • 6. Marikkar J, Dzulkifly M, Nadiha M, Man YBC. Detection of animal fat contaminations in sunflower oil by differential scanning calorimetry. International Journal of Food Properties 2012; 15: 683-690.doi: 10.1080/10942912.2010.498544
  • 7. Malaysia JKI. Jabatan Kemajuan Islam Malaysia. Putrajaya, Jabatan Kemajuan Islam Malaysia (JAKIM), Malaysia: Firdous Press, 2015.
  • 8. Gurdeniz G, Ozen B. Detection of adulteration of extravirgin olive oil by chemometric analysis of midinfrared spectral data. Food Chemistry 2009; 116: 519525. doi: 10.1016/j.foodchem.2009.02.068
  • 9. Tsopelas F, Konstantopoulos D, Kakoulidou A. Voltammetric fingerprinting of oils and its combination with chemometrics for the detection of extra virgin olive oil adulteration. Analytical Chimica Acta 2018; 1015: 8-19. doi: 10.1016/j.aca.2018.02.042
  • 10. Adeeba, Siddiqui A, Sherazi S, Ahmed S, Choudhary M et al. A comparative profiling of oral cancer patients and high risk niswar users using FT-IR and chemometric analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018; 203: 177-184. doi: 10.1016/j.saa.2018.05.107
  • 11. Fahim F, Naseer A, Ahmed S, Sherazi S, Bhanger M. A green method for the determination of selected antidiabetic drugs in pharmaceutical formulation by transmission FT-IR spectroscopy. Journal of Brazilian Chemical Society 2014; 25: 2032-2038. doi: 10.5935/0103-5053.20140188
  • 12. Mallah M, Sherazi S, Bhanger M, Mahesar S, Bajeer M. A rapid Fourier-transform infrared (FT-IR) spectroscopic method for direct quantification of paracetamol content in solid pharmaceutical formulations. Spectrochimica Acta, Part A 2015; 141: 6470. doi: 10.1016/j.saa. 2015.01.036
  • 13. Voort R, Sedman J, Sherazi S. Improved determination of isolated trans isomers in edible oils by Fourier transform infrared spectroscopy using spectral reconstitution. Journal Association of Analytical Chemists 2007; 90: 446-451.
  • 14. Sherazi S, Bhuttol A, Mahesar S, Bhanger M. Application of Fourier-transform infrared (FT-IR) spectroscopy for determination of total phenolics of freeze dried lemon juices. Journal of Chemical Society Pakistan 2017; 39 (6): 955-961. doi: 10.1016/j.vibspec.2010.09.010
  • 15. Vlachos N, Skopelitis Y, Psaroudaki M, Konstantinidou V, Chatzilazarou A et al. Applications of Fourier transforminfrared spectroscopy to edible oils. Analytica Chimica Acta 2006; 573-574: 459-465.
  • 16. Talpur M, Hassan S, Sherazi S, Mahesar S, Kara H, Kandhro AA, Sirajuddin. A simplified FTIR chemometric method for simultaneous determination of four oxidation parameters of frying canola oil. Spectrochimica Acta, Part A 2015; 149: 656-661. doi: 10.1016/j.saa.2015.04.098
  • 17. Naz S, Sherazi S, Talpur F, Mahesar S, Kara H. Rapid determination of free fatty acid content in waste deodorizer distillates using SB-ATR-FTIR. Journal of Association of Official Analytical Chemists 2012; 95: 1570-1573. doi: 10.5740/jaoacint.11-034
  • 18. Sherazi S, Talpur M, Mahesar A, Kandhro A, Arain S. Main fatty acids classes in vegetable oils by SB-ATR-Fourier transform infrared (FTIR) spectroscopy. Talanta 2009; 80: 600-606. doi:10.1016/j.talanta.2009.07.030
  • 19. Ley C, Revilla D, Ochoategui A, Ortiz G, Velazquez T. Prediction of coumarin and ethyl vanillin in pure vanilla extracts using MID FTIR spectroscopy and chemometrics. Talanta 2009; 197: 264-269. doi: 10.1016/j.talanta.2019.01.033
  • 20. Wong Y, Goh K, Abas F, Maulidiani M, Nyam K et al. Rapid quantification of 3-monochloropropane-1,2-diol in deep-fat frying using palm olein: using ATR-FTIR and chemometrics. Food Science Technology 2019; 100: 404-408. doi: 10.1016/j.lwt.2018.10.088
  • 21. Sherazi S, Kandhro A, Mahesar S, Bhanger M, Talpur M et al. Application of transmission FT-IR spectroscopy for the trans fat determination in the industrially processed edible oils. Food Chemistry 2009; 144: 323-327. doi: 10.1016/j.foodchem.2008.09.058
  • 22. Voort F, Sedman J, Sherazi S. Correcting for underlying absorption interferences in FT-IR trans analysis of edible oils using 2d correlation techniques. Journal of Agriculture and Food Chemistry 2008; 56: 1523-1537. doi: 10.1021/jf0725068
  • 23. Sherazi S, Mahesar S, Bhanger M. Rapid determination of free fatty acids in poultry feed lipids extracts by SB-ATR FT-IR spectroscopy. Journal of Agriculture and Food Chemistry 2007; 55: 4928-4932. doi: 10.1021/jf063554f
  • 24. Jawaid S, Talpur F, Sherazi S. Rapid detection of melamine adulteration in dairy milk by SB-ATR-Fourier transform infrared spectroscopy. Food Chemistry 2013; 141: 3066-3071. doi: 10.1016/j.foodchem.2013.05.106
  • 25. Suparman W, Sundhani E, Saputri S. The use of Fourier transform infrared spectroscopy (FTIR) and gas chromatography mass spectroscopy (GCMS) for halal authentication in imported chocolate with various variants. Journal of Food and Pharmaceutical Sciences 2015; 2: 6-11. doi: 10.14499/jfps
  • 26. Xu L, Cai C, Cui H, Ye Z, Yu X. Rapid discrimination of pork in Halal and non-Halal Chinese ham sausages by Fourier transform infrared (FTIR) spectroscopy and chemometrics. Meat Science 2012; 92: 506-510. doi: 10.1016/j.meatsci.2012.05.019
  • 27. Beale D, Morrison P, Karpe A, Dunn M. Chemometric analysis of lavender essential oils using targeted and untargeted GC-MS acquired data for the rapid identification and characterization of oil quality. Molecules 2017; 22: 1339. doi: 10.3390/molecules22081339
  • 28. Rohman A, Che Man YB, Hashim P, Ismail A. FTIR spectroscopy combined with chemometrics for analysis of lard adulteration in some vegetable oils. CyTA - Journal of Food 2011; 9: 96-101. doi: 10.1080/19476331003774639
  • 29. Kamboh M, Chang A, Ibrahima W, Sanagi M, Mahesar S et al. A green method for the quantitative assessment of neutral oil in palm fatty acid distillates by single bounce attenuated total reflectance Fourier transform infrared spectroscopy. Royal Society of Chemistry Advances 2015; 5: 50591-50596. doi: 10.1039/C5RA06987D
  • 30. Javidnia K, Parish M, Karimi S, Hemmateenejad B. Discrimination of edible oils and fats by combination of multivariate pattern recognition and FT-IR spectroscopy: a comparative study between different modeling methods. Spectrochimica Acta, Part A 2013; 104: 175-181. doi: 10.1016/j.saa.2012.11.067
  • 31. Rohman A, Man YC. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Research International 2010; 43: 886-892. doi: 10.1016/j.foodres.2009.12.006
  • 32. Rohman A, Man Y. The use of Fourier transform mid infrared (FT-MIR) spectroscopy for detection and quantification of adulteration in virgin coconut oil. Food Chemistry 2011; 129: 583-588. doi: 10.1016/j.foodchem.2011.04.070
  • 33. Alexa E, Dragomirescu A, Pop G, Jianu C, Dragos D. The use of FT-IR spectroscopy in the identification of vegetable oils adulteration. Journal of Food Agriculture and Environment 2009; 7: 20-24. doi: 10.1234/4.2009.1525
  • 34. Siddiqui N, Ahmad A. Infrared spectroscopic studies on edible and medicinal oils. International Journal of Science Environment & Technology 2013; 2: 1297-1306. doi: 10.1.1.682.2485
  • 35. Liang P, Wang H, Chen C, Liu D et al. The use of Fourier transform infrared spectroscopy for quantification of adulteration in virgin walnut oil. Journal of Spectroscopy 2012; 7 (2): 20-24. doi: 10.1155/2013/305604
  • 36. AOAC International. AOAC Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals, Association of Official Analytical Chemists, Arlington, VA, USA, 2002.