Formation and characterization of mechanochemically generated free lignin radicals from olive seeds

In this study, formation and quantification of mechanochemically generated free radicals of lignin were evaluated after the extraction of lignin from olive seeds and detailed lignin characterization was performed. Lignin was extracted from crushed olive seeds as an insoluble solid using Klason method. Isolated lignin was mechanochemically grinded under cryo conditions using Cryomill and particlesizes were determined by using Zeta Sizer, structural changes were followed by XRD and FTIR-ATR; thermal stabilities were tracked by TGA and DSC. In order to enable solubility demanding studies (such as H-1-NMR and GPC), acylation of lignin was accomplished. ESR measurements were completed to prove the nature of the radicals. Free radicals cavenging activity of olive seed lignin was determined and quantified using 2-diphenyl-1-picrylhydrazyl (DPPH) method. Number of created mechanoradicals (per gram of olive seed lignin) was calculated from the corresponding UV-Vis spectra. Finally, morphological changes of the lignin over cryomilling was evaluated using SEM.

___

  • Alu'datt MH, 2011, NAT PROD RES, V25, P876, DOI 10.1080/14786419.2010.489048
  • [Anonymous], T222OM88 TAPPI .
  • Asikkala J, 2012, J AGR FOOD CHEM, V60, P8968, DOI 10.1021/jf303003d
  • Balkan BA, 2018, ACTA HORTIC, V1199, P195, DOI [10.17660/ActaHortic.2018.1199.32, 10.17660/actahortic.2018.1199.32]
  • Bjorkman A, 1956, SVENSK PEPPERSTEIN, V59, P85 .
  • BLOIS MS, 1958, NATURE, V181, P1199, DOI 10.1038/1811199a0
  • BRAND-WILLIAMS W, 1995, FOOD SCI TECHNOL-LEB, V28, P25
  • Cabrini L, 2001, J AGR FOOD CHEM, V49, P6026, DOI 10.1021/jf010837t
  • Dai LM, 2018, CARBOHYD POLYM, V180, P122, DOI 10.1016/j.carbpol.2017.10.015
  • El Hage R, 2010, POLYM DEGRAD STABIL, V95, P997, DOI 10.1016/j.polymdegradstab.2010.03.012
  • Garcia A, 2010, PROCESS BIOCHEM, V45, P935, DOI 10.1016/j.procbio.2010.02.015
  • Glennie DW, 1962, CHEM LIGNIN .
  • Goncalves AR, 2000, J BRAZIL CHEM SOC, V11, P491 .
  • Goudarzi A., 2014, J NANOTECHNOL ENG ME, V5, P21006, DOI [10.1115/1.4028300, DOI 10.1115/1.4028300]
  • Gregorova A, 2007, J APPL POLYM SCI, V106, P1626, DOI 10.1002/app.26687
  • HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298
  • HEREDIAMORENO A, 1987, BIOMASS, V14, P143, DOI 10.1016/0144-4565(87)90016-3
  • Kirschweng B, 2017, POLYM DEGRAD STABIL, V145, P25, DOI 10.1016/j.polymdegradstab.2017.07.012
  • Kleine T, 2013, GREEN CHEM, V15, P160, DOI 10.1039/c2gc36456e
  • Kuzina SI, 2004, HIGH ENERG CHEM+, V38, P298, DOI 10.1023/B:HIEC.0000041340.45217.bd
  • Kwiczak-Yigitbasi J, 2020, GREEN CHEM, V22, P455, DOI 10.1039/c9gc02781e
  • LeCorre D, 2011, BIOMACROMOLECULES, V12, P3039, DOI 10.1021/bm200673n
  • Lee OH, 2008, J FOOD SCI, V73, pC519, DOI 10.1111/j.1750-3841.2008.00865.x
  • Lin SY, 1992, METHODS LIGNIN CHEM, P1 .
  • Lora JH, 2002, J POLYM ENVIRON, V10, P39, DOI 10.1023/A:1021070006895
  • Lu FJ, 1998, NUTR CANCER, V30, P31, DOI 10.1080/01635589809514637
  • Lu Q, 2012, FOOD CHEM, V131, P313, DOI 10.1016/j.foodchem.2011.07.116
  • Nandanwar R. A., 2016, J CHEM BIOL PHYS SCI, V6, P501 .
  • OBST JR, 1988, METHOD ENZYMOL, V161, P3 .
  • Owen RW, 2000, EUR J CANCER, V36, P1235, DOI 10.1016/S0959-8049(00)00103-9
  • OOzel M, 2020, CHEM MATER, V32, P7438, DOI 10.1021/acs.chemmater.0c02421
  • PETRAKIS L, 1978, ANAL CHEM, V50, P303, DOI 10.1021/ac50024a034
  • REX RW, 1960, NATURE, V188, P1185, DOI 10.1038/1881185a0
  • Rodriguez G, 2008, BIORESOURCE TECHNOL, V99, P5261, DOI 10.1016/j.biortech.2007.11.027
  • SAKAGUCHI M, 1992, COLLOID POLYM SCI, V270, P621, DOI 10.1007/BF00654038
  • Seino T, 2000, MOKUZAI GAKKAISHI, V46, P342 .
  • Ten E, 2015, J APPL POLYM SCI, V132, DOI 10.1002/app.42069
  • Trubetskaya A, 2016, BIOMASS BIOENERG, V94, P117, DOI 10.1016/j.biombioe.2016.08.020
  • Uetake K, 2018, J JPN I ENERGY, V97, P226, DOI 10.3775/jie.97.226
  • URBANSKI T, 1967, NATURE, V216, P577, DOI 10.1038/216577a0